Что такое бозон Хиггса, и почему его так искали? Что такое бозон хиггса Адронный коллайдер бозон хиггса.

Как теория, Стандартная модель работает хорошо, несмотря на ее неспособность вписаться в гравитацию. Благодаря этому, физики предсказали существование определенных частиц до того, как те были обнаружены экспериментально. И вот, на горизонте появился бозон Хиггса. Давайте выясним, как эта частица вписывается в Стандартную модель и Вселенную в целом.

Бозон Хиггса: последний элемент головоломки

Ученые считают, что каждая из этих четырех фундаментальных сил обладает соответствующей частицей (или бозоном), которая воздействует на материю. Это трудно понять. Мы привыкли думать о силе, как о загадочном эфире, который лежит за пределами бытия и небытия, но на самом деле сила так же реальна, как и сама материя.

Некоторые физики описывают бозоны как весы, связанные резинками с частицами материи, которая их порождает. Используя эту аналогию, мы можем представить бозоны, постоянно выстреливающие с помощью резинок и при этом спутывающиеся с другими бозонами в процессе рождения силы.

Ученые считают, что у каждой из четырех фундаментальных сил есть свои специфические бозоны. Электромагнитные поля, например, передают электромагнитную силу материи посредством фотона. Физики думают, что у бозона Хиггса такая же функция, но он будет передавать массу.

Но может ли у материи быть масса без бозона Хиггса? По Стандартной модели - нет. Но физики нашли решение. Что если у всех частиц нет собственной массы, но они получают ее, проходя через определенное поле? Это поле, известное как поле Хиггса, по-разному влияет на разные частицы. Фотоны могут проскользнуть незамеченными, а вот W- и Z-бозоны увязнут в массе. По факту, допущение существования бозона Хиггса говорит о том, что все, что обладает массой, взаимодействует с вездесущим полем Хиггса, которое занимает всю Вселенную. И как в других полях, описываемых Стандартной моделью, хиггсовскому нужна своя частица-переносчик, чтобы влиять на другие частицы. Она получила название бозона Хиггса.

4 июля 2012 года ученые, работающие на Большом адронном коллайдере, объявили, что открыли частицу, которая ведет себя как бозон Хиггса. Можно выдыхать - подумали физики, но выяснилось, что бозонов, подобных хиггсовскому, может быть несколько, а значит исследования на более высоких уровнях энергии будут продолжаться и продолжаться.

Что примечательно, бозон Хиггса неожиданно оказался прямо-таки провозвестником гибели Вселенной. Сценарий можно .

Бозон Хиггса, его место в ряду элементарных частиц и свойства, предсказанные теоретически. Важность поиска бозона для физической картины мира. Эксперименты...

От Masterweb

10.06.2018 14:00

Бозон Хиггса в физике представляет собой элементарную частицу, которая, по мнению ученых, играет фундаментальную роль в образовании массы во Вселенной. Подтверждение или опровержение существования этой частицы являлось одной из основных целей использования Большого Адронного Коллайдера (БАК) - самого мощного ускорителя частиц в мире, который находится в Европейской лаборатории физики элементарных частиц (ЦЕРН) недалеко от Женевы.

Почему так было важно найти бозон Хиггса

В современной физике элементарных частиц существует некоторая стандартная модель. Единственной частицей, которую предсказывает эта модель, и которую ученые пытались долго обнаружить, является названный бозон. Стандартная модель частиц (согласно экспериментальным данным) описывает все взаимодействия и превращения между элементарными частицами. Однако оставалось единственное "белое пятно" в этой модели - отсутствие ответа на вопрос о происхождении массы. Важность массы не вызывает сомнения, ведь без нее Вселенная была бы совершенно другой. Если бы у электрона не было массы, то не существовали бы атомы и сама материя, не было бы биологии и химии, не было бы, в конце концов, человека.

Чтобы объяснить концепцию существования массы, несколько физиков, среди которых был британец Питер Хиггс, еще в 60-х годах прошлого столетия выдвинули гипотезу о существовании так называемого поля Хиггса. По аналогии с фотоном, который является частицей электромагнитного поля, поле Хиггса также требует существование его частицы-носителя. Таким образом, бозоны Хиггса простыми словами – это частицы, из множества которых образуется поле Хиггса.

Частица Хиггса и поле, которое она создает


Все элементарные частицы можно разделить на два типа:

  • Фермионы.
  • Бозоны.

Фермионы - это те частицы, которые образуют известную нам материю, например, протоны, электроны и нейтроны. Бозоны являются элементарными частицами, которые обуславливают существование различного типа взаимодействия между фермионами. Например, бозонами являются фотон - носитель электромагнитного взаимодействия, глюон - носитель сильного или ядерного взаимодействия, бозоны Z и W, которые отвечают за слабое взаимодействие, то есть за превращения между элементарными частицами.

Если говорить простым языком о бозоне Хиггса и о смысле гипотезы, которая объясняет появление массы, то следует представить, что эти бозоны распределены в пространстве Вселенной и образуют непрерывное поле Хиггса. Когда какое-либо тело, атом или элементарная частица испытывают "трение" об это поле, то есть взаимодействуют с ним, то это взаимодействие проявляется как существование массы у данного тела или частицы. Чем сильнее тело "трется" частица о поле Хиггса, тем больше его масса.

Как можно обнаружить, и где копать бозон Хиггса

Прямым способом этот бозон обнаружить не удается, поскольку (согласно теоретическим данным) после его появления он мгновенно распадается на другие более устойчивые элементарные частицы. А вот появившиеся после распада бозона Хиггса частицы уже можно обнаружить. Именно они являются "следами", свидетельствующими о существовании этой важной частицы.

Ученые, чтобы обнаружить частицу бозон Хиггса, сталкивали высокоэнергетические пучки протонов. Огромная энергия протонов при столкновении способна перейти в массу, согласно известному уравнению Альберта Эйнштейна E = mc2. В зоне столкновения протонов в коллайдере расположено множество детекторов, которые позволяют регистрировать появление и распад любых частиц.

Масса бозона Хиггса теоретически не была установлена, а был определен лишь возможный набор ее значений. Для обнаружения частицы требуются мощные ускорители. Большой Адронный Коллайдер (БАК) является самым мощным на данный момент ускорителем на планете Земля. С его помощью удавалось сталкивать протоны с энергией, близкой к 14 тетраэлектронвольтам (ТэВ). В настоящее время он работает с энергиями около 8 ТэВ. Но даже этих энергий оказалось достаточно для обнаружения бозона Хиггса или частицы Бога, как ее еще называют многие.

Случайные и реальные события


В физике элементарных частиц существование того или иного события оценивается с определенной вероятностью "сигма", которая определяет случайность или реальность этого события, полученного в эксперименте. Чтобы увеличить вероятность какого-либо события, необходимо проанализировать большое число данных. Поиски и открытие бозона Хиггса относятся к подобного рода вероятным событиям. Для обнаружения этой частицы в БАК генерировалось около 300 млн столкновений за одну секунду, таким образом количество данных, которое нужно было проанализировать, являлось огромным.

Можно говорить о реальном наблюдении конкретного события с уверенностью, если его "сигма" будет равна 5 и больше. Это эквивалентно событию с монетой (если ее подбросить, и она 20 раз подряд упадет решкой). Такой результат соответствует вероятности менее 0,00006%.

Как только обнаружено это "новое" реальное событие, необходимо детально его изучить, ответив на вопрос, точно это событие соответствует частице Хиггса или это какая-то другая частица. Для этого необходимо тщательно изучать свойства продуктов распада этой новой частицы и сравнивать их с результатами теоретических предсказаний.

Эксперименты БАК и открытие частицы массы

Поиски частицы массы, которые выполнялись на коллайдерах БАК в Женеве и Теватрон в лаборатории Ферми в США, установили, что частица Бога должна обладать массой большей, чем 114 гигаэлектронвольт (ГэВ), если ее выражать в энергетическом эквиваленте. Для примера скажем, что масса одного протона приблизительно соответствует 1 ГэВ. Другие эксперименты, которые были направлены на поиск данной частицы, выяснили, что ее масса не может превышать 158 ГэВ.


Первые результаты поиска бозона Хиггса в БАК были представлены еще в 2011 году, благодаря анализу данных, которые собирались в коллайдере в течение одного года. За это время было проведено два основных эксперимента по указанной проблеме - ATLAS и CMS. Согласно этим экспериментам, бозон имеет массу между 116 и 130 ГэВ или между 115 и 127 ГэВ. Интересно отметить, что в обоих названных экспериментах в БАК по многим признакам масса бозона находится в узкой области между 124 и 126 ГэВ.

Питер Хиггс вместе со своим коллегой Франком Энглертом 8 октября 2013 года получили Нобелевскую премию за открытие теоретического механизма понимания существования массы у элементарных частиц, который был подтвержден в экспериментах ATLAS и CMS на БАК в ЦЕРН (Женева), когда был обнаружен экспериментально предсказанный бозон.

Важность открытия частицы Хиггса для физики

Поясняя об открытии бозона Хиггса просто, можно сказать, что оно положило начало новому этапу в физике элементарных частиц, поскольку это событие предоставило новые пути для дальнейшего исследования феноменов Вселенной. Например, изучение природы и особенностей черной материи, которая по общим оценкам составляет около 23% всей известной Вселенной, но свойства которой остаются тайной до настоящего времени. Открытие частицы Бога позволило продумать и поставить новые эксперименты в БАК, которые помогут прояснить данный вопрос.

Свойства бозона

Многие свойства частицы Бога, которые описываются в стандартной модели элементарных частиц, в настоящее время полностью установлены. Этот бозон имеет нулевой спин, у него нет электрического заряда и цвета, поэтому он не взаимодействует с другими бозонами, такими как фотон и глюон. Однако он взаимодействует со всеми частицами, которые обладают массой: кварками, лептонами и бозонами слабых взаимодействий Z и W. Чем больше масса частицы, тем сильнее она взаимодействует с бозоном Хиггса. Кроме того, этот бозон является античастицей для самого себя.


Масса частицы, ее среднее время жизни и взаимодействие между бозонами не предсказывает теория. Эти величины могут быть измерены только экспериментальным путем. Результаты экспериментов на БАК в ЦЕРН (Женева) установили, что масса этой частицы лежит в пределах 125-126 ГэВ, а время ее жизни составляет приблизительно 10-22 секунды.

Открытый бозон и космический апокалипсис

Открытие этой частицы считается одним из самых важных за всю историю человечества. Эксперименты с этим бозоном продолжаются, а ученые получают новые результаты. Одним из них стал тот факт, что бозон может привести Вселенную к гибели. Причем этот процесс уже начался (согласно мнению ученых). Суть проблемы заключается в следующем: бозон Хиггса может сколлапсировать самостоятельно в какой-либо части Вселенной. Это создаст энергетический пузырь, который постепенно распространится, поглощая все на своем пути.

На вопрос, будет ли конец света, каждый ученый отвечает положительно. Дело в том, что существует теория, которая называется "Звездная модель". В ней постулируется очевидное утверждение: все имеет свое начало и свой конец. Согласно современным представлениям, конец Вселенной будет выглядеть следующим образом: ускоренное расширение Вселенной приводит к распылению материи в пространстве. Этот процесс будет продолжаться, пока не погаснет последняя звезда, после этого Вселенная погрузится в вечный мрак. Через сколько это произойдет, никто не знает.

С открытием бозона Хиггса появилась еще одна теория конца света. Дело в том, что некоторые физики считают, что полученная масса бозона является одной из возможных временных масс, существуют другие ее значения. Эти значения массы также могут реализоваться, поскольку (говоря простым языком) бозон Хиггса - это элементарная частица, которая может проявлять волновые свойства. То есть существует вероятность его перехода в более устойчивое состояние, соответствующее большей массе. Если такой переход произойдет, то все, известные человеку природные законы, приобретут другой вид, поэтому наступит конец известной нам Вселенной. Кроме того, данный процесс уже мог произойти в какой-либо части Вселенной. Человечеству остается не так много времени для своего существования.


Польза БАК и других ускорителей элементарных частиц для общества

Технологии, которые разрабатываются для ускорителей частиц, являются полезными и для медицины, информатики, индустрии, окружающей среды. Например, магниты коллайдера, изготовленные из суперпроводящих материалов, с помощью которых разгоняются элементарные частицы, могут применяться для медицинский технологий диагностики. Современные детекторы различных частиц, образующихся в коллайдере, могут использоваться в позитронной томографии (позитрон - это античастица электрона). Кроме того, технологии формирования пучков из элементарных частиц в БАК могут использоваться для терапии различных заболеваний, например, раковых опухолей.

Что касается пользы исследований с помощью БАК в ЦЕРН (Женева) для информационных технологий, то следует сказать, что глобальная компьютерная сеть GRID, а также сам интернет обязаны своему развитию во многом экспериментам с ускорителями элементарных частиц, которые производили огромное количество данных. Необходимость в обмене этими данными между учеными всего мира привела к созданию в ЦЕРН Тимом Бернелсом-Ли языка World Wide Web (WWW), на котором основан Интернет.

Пучки частиц, которые формировались и формируются в различного рода ускорителях, в настоящее время широко используются в индустрии исследования свойств новых материалов, структуры биологических объектов и продуктов химической промышленности. Достижения физики элементарных частиц применяются для конструирования солнечных энергетических панелей, для переработки радиоактивных отходов и так далее.

Влияние открытия частицы Хиггса на литературу, кино и музыку


Следующие факты свидетельствуют о сенсационности новости открытия частицы массы в физике:

  • После обнаружения этой частицы была опубликована научно-популярная книга "Частица Бога: если Вселенная - это ответ, то каков же вопрос?" Льва Лидермана. Физики считают, что называть бозон Хиггса частицей Бога является преувеличением.
  • В фильме "Ангелы и демоны", который основан на одноименной книге, используется также название бозона "частица Бога".
  • В фантастическом фильме "Солярис", в котором главными героями являются Джордж Клуни и Наташа Макэлхоун, выдвигается теория, где упоминается поле Хиггса, и его важная роль в стабилизации субатомных частиц.
  • В научно-фантастической книге "Флэшфорвард", написанной Робертом Савьером (Robert Sawyer) в 1999 году, два ученых становятся причиной мировой катастрофы, когда ставят эксперименты по обнаружению бозона Хиггса.
  • Испанский сериал "Ковчег" повествует о мировой катастрофе, при которой все континенты оказались затопленными в результате экспериментов на Большом Адронном Коллайдере, а выжили только люди на корабле "Полярная Звезда".
  • Музыкальная группа из Мадрида "Aviador Dro" в своем альбоме "Голос науки" посвятило песню найденному бозону массы.
  • Австралийский певец Ник Кейв в своем альбоме "Push the Sky Away" одну из песен назвал "Синий бозон Хиггса".

Улица Киевян, 16 0016 Армения, Ереван +374 11 233 255

Мы, коллектив Quantuz, (пытаемся вступить в сообщество GT) предлагаем наш перевод раздела сайта particleadventure.org, посвященного бозону Хиггса. В данном тексте мы исключили неинформативные картинки (полный вариант см. в оригинале). Материал будет интересен всем интересующимся последними достижениями прикладной физики.

Роль бозона Хиггса

Бозон Хиггса был последней частицей открытой в Стандартной Модели. Это критический компонент теории. Его открытие помогло подтвердить механизм того, как фундаментальные частицы приобретают массу. Эти фундаментальные частицы в Стандартной Модели являются кварками, лептонами и частицами-переносчиками силы.

Теория 1964-го года

В 1964 году шестеро физиков-теоретиков выдвинули гипотезу существования нового поля (подобно электромагнитному), которым заполнено все пространство и решает критическую проблему в нашем понимании вселенной.

Независимо от этого другие физики построили теорию фундаментальных частиц, названную в итоге «Стандартной Моделью», которая обеспечивала феноменальную точность (экспериментальная точность некоторых частей Стандартной Модели достигает 1 к 10 миллиардам. Это равнозначно предсказанию расстояния между Нью-Йорком и Сан-Франциско с точностью около 0.4 мм). Эти усилия оказались тесно взаимосвязаны. Стандартная Модель нуждалась в механизме приобретения частицами массы. Полевую теорию разработали Питер Хиггс, Роберт Браут, Франсуа Энглер, Джералд Гуралник, Карл Хаген и Томас Киббл.

Бозон

Питер Хиггс понял, что по аналогии с другими квантовыми полями должна существовать частица, связанная с этим новым полем. Она должна иметь спин равным нулю и, таким образом, являться бозоном – частицей с целым спином (в отличие от фермионов, у которых спин полуцелый: 1/2, 3/2 и т.д.). И действительно он вскоре стал известен как Бозон Хиггса. Единственным его недостатком было то, что его никто не видел.

Какова масса бозона?

К несчастью, теория, предсказывающая бозон, не уточняла его массу. Прошли годы, пока не стало ясно, что бозон Хиггса должен быть экстремально тяжелым и, скорее всего, за пределами досягаемости для установок, построенных до Большого Адронного Коллайдера (БАК).

Помните, что согласно E=mc 2 , чем больше масса частицы, тем больше энергии надо для ее создания.

В то время, когда БАК начал сбор данных в 2010, эксперименты на других ускорителях показали, что масса бозона Хиггса должна быть больше, чем 115 ГэВ/с2. В ходе опытов на БАК планировалось искать доказательства бозона в интервале масс 115-600 ГэВ/с2 или даже выше, чем 1000 ГэВ/с2.

Каждый год экспериментально удавалось исключать бозоны с бОльшими массами. В 1990 было известно, что искомая масса должна быть больше 25 ГэВ/с2, а в 2003 выяснилось, что больше 115 ГэВ/с2

Столкновения на Большом Адронном Коллайдере могут порождать много чего интересного

Дэннис Оувербай в «Нью-Йорк Таймс» рассказывает про воссоздание условий триллионной доли секунды после Большого Взрыва и говорит:

«…останки [взрыва] в этой части космоса не видны с тех пор, как Вселенная охладилась 14 миллиардов лет назад – весна жизни мимолетна, снова и снова во всех ее возможных вариантах, как если бы Вселенная участвовала в собственной версии фильма «день Сурка »

Одним из таких «останков» может быть бозон Хиггса. Его масса должна быть очень велика, и он должен распадаться менее чем за наносекунду.

Анонс

После половины столетия ожиданий драма стала напряженной. Физики спали у входа в аудиторию, чтобы занять места на семинаре в лаборатории ЦЕРН в Женеве.

За десять тысяч миль отсюда, на другом краю планеты, на престижной международной конференции по физике частиц в Мельбурне сотни ученых со всех уголков земного шара собрались, чтобы услышать вещание семинара из Женевы.

Но сперва давайте взглянем на предпосылки.

Фейерверк 4 июля

4-го июля 2012 руководители экспериментов ATLAS и CMS на Большом адронном коллайдере представили их последние результаты поиска бозона Хиггса. Ходили слухи, что они собираются сообщить больше, чем просто отчет о результатах, но что?

Конечно же, когда результаты были представлены, обе коллаборации, проводившие эксперименты, отчитались о том, что они нашли доказательство существования частицы «похожей на бозон Хиггса» с массой около 125 ГэВ. Это определенно была частица, и если она не бозон Хиггса, то очень качественная его имитация.

Доказательство не было сомнительным, ученые располагали результатами в пять сигма, означающих, что существует менее одной вероятности на миллион, что данные являются просто статистической ошибкой.

Бозон Хиггса распадается на другие частицы

Бозон Хиггса распадается на другие частицы почти сразу же после того, как будет произведен, так что мы можем наблюдать только продукты его распада. Наиболее распространенные распады (среди тех, которые мы можем увидеть) показаны на рисунке:

Каждый вариант распада бозона Хиггса известен как «канал распада» или «режим распада». Хотя bb-режим является распространенным, многие другие процессы производят подобные частицы, так что если вы наблюдаете bb-распад, очень трудно сказать, появились ли частицы в связи с бозоном Хиггса или как-то еще. Мы говорим, что режим bb-распада имеет «широкий фон».

Лучшими каналами распада для поиска бозона Хиггса являются каналы двух фотонов и двух Z-бозонов.*

*(Технически для 125 ГэВ массы бозона Хиггса распад на два Z-бозона не возможен, так как Z-бозон имеет массу 91 ГэВ, вследствие чего пара имеет массу 182 ГэВ, большую чем 125 ГэВ. Однако то, что мы наблюдаем, является распадом на Z-бозон и виртуальный Z-бозон (Z*), масса которого много меньше.)

Распад бозона Хиггса на Z + Z

Z-бозоны также имеют несколько режимов распада, включая Z → e+ + e- и Z → µ+ + µ-.

Режим распада Z + Z был довольно прост для экспериментов ATLAS и CMS, когда оба Z-бозона распадались в одном из двух режимов (Z → e+ e- или Z → µ+ µ-). На рисунке четыре наблюдаемых режима распада бозона Хиггса:

Конечный результат состоит в том, что иногда наблюдатель увидит (в дополнение к некоторым несвязанным частицам) четыре мюона, или четыре электрона, или два мюона и два электрона.

Как бозон Хиггса выглядел бы в детекторе ATLAS

В этом событии «джет» (струя) возникла идущей вниз, а бозон Хиггса – вверх, но он почти мгновенно распался. Каждая картинка столкновения называется «событием».

Пример события с возможным распадом бозона Хиггса в виде красивой анимации столкновения двух протонов в Большом адронном коллайдере можно посмотреть на сайте-источнике по этой ссылке .

В этом событии бозон Хиггса может быть произведен, а затем немедленно распадается на два Z-бозона, которые в свою очередь немедленно распадутся (оставив два мюона и два электрона).

Механизм, дающий массу частицам

Открытие бозона Хиггса является невероятным ключом к разгадке механизма того, как фундаментальные частицы приобретают массу, что и утверждали Хиггс, Браут, Энглер, Джералд, Карл и Киббл. Что это за механизм? Это очень сложная математическая теория, но ее главная идея может быть понятна в виде простой аналогии.

Представьте себе пространство, заполненное полем Хиггса, как вечеринку спокойно общающихся между собой физиков с коктейлями …
В какой-то момент входит Питер Хиггс, который создает волнение, двигаясь через комнату и притягивая группу поклонников с каждым шагом…

До того как войти в комнату профессор Хиггс мог двигаться свободно. Но после захода в комнату полную физиков его скорость уменьшилась. Группа поклонников замедлила его движение по комнате; другими словами, он приобрел массу. Это аналогично безмассовой частице, приобретающей массу при взаимодействии с полем Хиггса.

А ведь все что он хотел – это добраться до бара!

(Идея аналогии принадлежит проф. Дэвиду Дж. Миллеру из Университетского колледжа Лондона, который выиграл приз за доступное объяснение бозона Хиггса - © ЦЕРН)

Как бозон Хиггса получает собственную массу?

С другой стороны, в то время новости распространяются по комнате, они также формируют группы людей, но на этот раз исключительно из физиков. Такая группа может медленно перемещаться по комнате. Подобно другим частицам бозон Хиггса приобретает массу просто взаимодействуя с полем Хиггса.

Поиск массы бозоны Хиггса

Как вы найдете массу бозона Хиггса, если он распадается на другие частицы до того, как мы его обнаружим?

Если вы решили собрать велосипед и захотели знать его массу, вам следует складывать массы частей велосипеда: двух колес, рамы, руля, седла и т.д.

Но если вы хотите вычислить массу бозона Хиггса из частиц, на которые он распался, просто складывать массы не получится. Почему же нет?

Сложение масс частиц распада бозона Хиггса не работает, так как эти частицы имеют огромную кинетическую энергию по сравнению с энергией покоя (помним, что для покоящейся частицы E = mc 2). Это происходит вследствие того, что масса бозона Хиггса много больше, чем массы конечных продуктов его распада, поэтому оставшаяся энергия куда-то уходит, а именно - в кинетическую энергию возникших после распада частиц. Теория относительности говорит нам использовать равенство ниже для подсчета «инвариантной массы» набора частиц после распада, которая и даст нам массу «родителя», бозона Хиггса:

E 2 =p 2 c 2 +m 2 c 4

Поиск массы бозона Хиггса из продуктов его распада

Примечание Quantuz: тут мы немного не уверены в переводе, так как идут специальные термины. Предлагаем сравнить перевод с источником на всякий случай.

Когда мы говорим о распаде типа H → Z + Z* → e+ + e- + µ+ + µ-, то четыре возможные комбинации, показанные выше, могут возникнуть как от распада бозона Хиггса, так и от фоновых процессов, так что нам нужно взглянуть на гистограмму суммарной массы четырех частиц в указанных комбинациях.

Гистограмма масс подразумевает, что мы наблюдаем за огромным количеством событий и отмечаем количество тех событий, когда получается итоговая инвариантная масса. Она выглядит как гистограмма, потому что значения инвариантной массы разделены на столбцы. Высота каждого столбца показывает число событий, в которых инвариантная масса оказывается в соответствующем диапазоне.

Мы можем вообразить, что это результаты распада бозона Хиггса, но это не так.

Данные о бозоне Хиггса из фона

Красные и фиолетовые области гистограммы показывают «фон», в котором число четырехлептонных событий предположительно произойдут без участия бозона Хиггса.

Синяя область (см. анимацию) представляет «сигнальный» прогноз, в котором число четырехлептонных событий предполагают результат распада бозона Хиггса. Сигнал расположен на вершине фона, так как для того, чтобы получить общее прогнозируемое количество событий, вы просто складываете все возможные исходы событий, которые могут произойти.

Черные точки показывают число наблюдаемых событий, в то время как черные линии, проходящие через точки, представляют статистическую неопределенность в этих числах. Рост данных (см. следующий слайд) на уровне 125 ГэВ является признаком новой 125 ГэВ-частицы (бозон Хиггса).

Анимация эволюции данных для бозона Хиггса по мере накопления находится на оригинальном сайте .

Сигнал бозона Хиггса медленно растет над фоном.

Данные бозона Хиггса, распавшегося на два фотона

Распад на два фотона (H → γ+ γ) имеет еще более широкий фон, но тем не менее сигнал четко выделяется.

Это гистограмма инвариантной массы для распада бозона Хиггса на два фотона. Как вы можете видеть, фон очень широкий по сравнению с предыдущим графиком. Так происходит потому, что существует гораздо больше процессов производящих два фотона, чем процессов с четырьмя лептонами.

Пунктирная красная линия показывает фон, а жирная красная линия показывает сумму фона и сигнала. Мы видим, что данные хорошо согласуются с новой частицей в районе 125 ГэВ.

Недостатки первых данных

Данные были убедительны, но не совершенны, и имели значительные недостатки. К 4-му июля 2012 не имелось достаточной статистики для определения темпа, с которым частица (бозон Хиггса) распадается на различные наборы менее массивных частиц (т.н. «ветвящиеся пропорции»), предсказываемые Стандартной Моделью.

«Ветвящаяся пропорция» это просто вероятность того, что частица распадется через данный канал распада. Эти пропорции предсказываются Стандартной Моделью и измерены с помощью многократного наблюдения распадов одних и тех же частиц.

Следующий график показывает лучшие измерения ветвящихся пропорций, которые мы можем сделать по состоянию на 2013 год. Так как это пропорции, предсказанные Стандартной Моделью, ожидание равно 1.0. Точки являются текущими измерениями. Очевидно, что отрезки ошибок (красные линии) в большинстве все еще слишком велики, чтобы делать серьезные выводы. Эти отрезки сокращаются по мере получения новых данных и точки возможно могут перемещаться.

Как же узнать, что человек наблюдает событие–кандидат на бозон Хиггса? Существуют уникальные параметры, которые выделяют такие события.

Является ли частица бозоном Хиггса?

В то время как был обнаружен распад новой частицы, темп, с которым это происходит, к 4 июля все еще был не ясен. Даже было не известно, имеет ли открытая частица правильные квантовые числа – то есть имеет ли она спин и четность, требуемые для бозона Хиггса.

Другими словами, 4 июля частица выглядела как утка, но нам требовалось убедиться, что она плавает как утка и крякает как утка.

Все результаты экспериментов ATLAS и CMS Большого адронного коллайдера (а также коллайдера Тэватрон из Лаборатории Ферми) после 4 июля 2012 показали замечательную согласованность с ожидаемыми ветвящимися пропорциями для пяти режимов распада, обсуждаемых выше, и согласованность с ожидаемым спином (равным нулю) и четностью (равной +1), которые являются основными квантовыми числами.

Эти параметры имеют важное значение для определения того, действительно ли новая частица это бозон Хиггса или какая-то другая неожиданная частица. Так что все имеющиеся доказательства указывают на бозон Хиггса из Стандартной Модели.

Некоторые физики посчитали это разочарованием! Если новая частица это бозон Хиггса из Стандартной Модели, то, значит, Стандартная Модель по сути полностью завершена. Все, что теперь можно делать, так это проводить измерения с возрастающей точностью того, что уже открыто.

Но если новая частица окажется чем-то, непредсказанным Стандартной Моделью, то это откроет дверь множеству новых теорий и идей для проверки. Неожиданные результаты всегда требуют новых объяснений и помогают толкать теоретическую физику вперед.

Откуда во Вселенной появилась масса?

В обычной материи основная часть массы содержится в атомах, а, если быть точным, заключена в ядре, состоящим из протонов и нейтронов.

Протоны и нейтроны сделаны из трех кварков, которые приобретают свою массу, взаимодействуя с полем Хиггса.

НО… массы кварков вносят вклад в размере около 10 МэВ, это примерно 1% от массы протона и нейтрона. Так откуда же берется оставшаяся масса?

Оказывается, масса протона возникает за счет кинетической энергии составляющих его кварков. Как вы, конечно же, знаете, масса и энергия связаны равенством E=mc 2 .

Так что лишь малая часть массы обычной материи во Вселенной принадлежит механизму Хиггса. Однако, как мы увидим в следующем разделе, Вселенная была бы полностью необитаема без хиггсовской массы, и некому было бы открыть хиггсовский механизм!

Если бы не было поля Хиггса?

Если бы не было поля Хиггса, на что была бы похожа Вселенная?

Это не так очевидно.

Определенно, ничего бы не связывало электроны в атомах. Они бы разлетались со скоростью света.

Но кварки связаны сильным взаимодействием и не могут существовать в свободном виде. Некоторые связанные состояния кварков, возможно, сохранились бы, но насчет протонов и нейтронов не ясно.

Вероятно, все это представляло бы собой ядерно-подобную материю. И может быть все это сколлапсировало в результате гравитации.

Факт, в котором мы точно уверены: Вселенная была бы холодной, тёмной и безжизненной.
Так что бозон Хиггса спасает нас от холодной, тёмной, безжизненной Вселенной, где нет людей, чтобы открыть бозон Хиггса.

Является ли бозон Хиггса бозоном из Стандартной Модели?

Мы точно знаем, что частица, которую мы открыли это бозон Хиггса. Нам также известно, что он очень похож на бозон Хиггса из Стандартной Модели. Но существует два момента, которые все еще не доказаны:

1. Несмотря на то, что бозон Хиггса из Стандартной Модели, имеются небольшие расхождения, свидетельствующие о существовании новой физики (неизвестной ныне).
2. Существуют больше чем один бозоны Хиггса, с другими массами. Это также говорит о том, что появятся новые теории для исследования.

Только время и новые данные помогут выявить либо чистоту Стандартной Модели и ее бозона либо новые волнующие физические теории.

- Что даст новая частица ученым и обычным людям?

Основные направления развития современной фундаментальной физики - это физика элементарных частиц и космология - наука об эволюции Вселенной. В последние 10–15 лет стало понятно, что устройства микро- и макромира теснейшим образом связаны друг с другом. Открытие в одной области дает сильный импульс развития другой.

Открытие бозона Хиггса позволит ученым подтвердить, что основа современной физики - Стандартная модель - является надежным базисом для дальнейшего развития наших представлении о Природе. Предсказание существования частицы Хиггса не было подтверждено экспериментально десятки лет, что являлось темным пятном всей физики элементарных частиц. Открытие бозона Хиггса подтверждает верность основного направления развития и сильно сужает возможности альтернативных теорий как в микро-, так и в макромире. Это позволит более эффективно использовать бюджетные средства.

- Где возможно применить открытие нового бозона?

Об этом еще рано говорить. Прежде всего, надо досконально изучить его свойства и только потом думать о применении. Уже сейчас исследуются возможности использования частиц Хиггса в объяснении самого раннего этапа образования Вселенной. А также феномена темной энергии. Последний, пока не объясненный феномен был открыт в 1998 году при наблюдении ускоренного разбегания квазаров - наиболее ярких объектов во Вселенной. Объяснить этот эффект можно, лишь предполагая не совсем обычные свойства вещества, заполняющего Вселенную.

- Какой толчок развитию новых технологий может дать данная частица?

Из истории науки известно, что фундаментальные открытия далеко не сразу приводят к появлению новых технологий. Хорошо известный пример - открытие Майклом Фарадеем законов электромагнитной индукции, применение которых в технике казалось крайне сомнительным. Сейчас же, спустя почти 200 лет, трудно представить наш мир без электричества. Другой пример - открытое в 1933 году нейтрино, которое настолько слабо взаимодействует с веществом, что может пройти сквозь Землю, даже не заметив этого. Долгое время казалось, что частице с таким свойством трудно будет найти применение. Однако сейчас ученые уже пытаются использовать нейтрино для передачи сигналов сквозь плотные среды и выявлять следы ядерных реакций на большом расстоянии.

Аналогичная ситуация и с частицей Хиггса. По-видимому, должен пройти не один десяток лет, чтобы стали очевидными возможности применения этого феномена в технике. Прежде всего получат развитие смежные области науки, затем влияние распространится дальше. Может оказаться, что плодами этого открытия смогут воспользоваться лишь следующие поколения, так же как мы сейчас пользуемся открытиями Фарадея.

Развитие современной науки происходит ускоренными темпами и в самых различных направлениях. Так, в Дубне сооружается Российский ускоритель тяжелых ионов, «Ника». Он будет работать в той области энергий, которая не охватывается ни одной из существующих в мире установок, в том числе и Большим адронным коллайдером. Именно в этой области энергий есть шанс получить смешанную фазу ядерной материи - состояние, в котором одновременно существуют высвобожденные из ядра частицы - кварки и глюоны. Пока свободные кварки «поймать» не удавалось никому в мире.

5 июля 2012 14:11 МР
версия для печати

Бозон Хиггса простым языком можно сравнить со сплетней, которую запустили на одном конце большого зала, а все, кто в нем находился, начали передавать ее по цепочке. Бозон Хиггса нашли в CERN (том самом, что упоминается в «Коде да Винчи»). Уже сейчас физики всего мира считают, что открытие бозона Хиггса – это величайшее открытие в мире элементарных частиц.

Бозон Хиггса: что это такое?

Бозон Хиггса простыми словами пытались объяснить давно. В 1993 году министр науки Великобритании Вильям Волдгрэйв объявил конкурс на самое простое объяснение бозона Хиггса. Самой распространенной версией стала версия с вечеринкой. Чтобы понять, что такое бозон Хиггса, следует представить большую комнату, в которой проходит вечеринка.

Бозон Хиггса нашли

В определенный момент в комнату входит человек (например, рок-звезда), с которым все хотят пообщаться. Когда человек перемещается, за ним идет несколько гостей вечеринки – может показаться, что за ним идут скопления людей. При этом скорость движения рок-звезды ниже, чем у других гостей. Гости вечеринки сами могут объединяться в группки – если в толпе начнут обсуждать сплетню, то люди начнут передавать слух друг другу, образуя небольшие уплотнения.


Публикации по теме