Осцилляции нейтрино. Нейтринные осцилляции для чайников Осцилляции в вакууме

Про нейтринные осцилляции слышали почти все гики. Про это явление написано много профессиональной литературы и куча популярных статей, но вот только авторы учебников считают, что читатель разбирается в теории поля, да еще и квантовой, а авторы популярных статей обычно ограничиваются фразами в стиле: «Частички летят-летят, а потом БАЦ и превращаются в другие», причем с другой массой (!!!). Постараемся разобраться, откуда берется этот интереснейший эффект и как его наблюдают с помощью огромных установок. А заодно узнаем, как можно найти и извлечь несколько нужных атомов из 600 тонн вещества.

Еще одно нейтрино

В предыдущей статье я рассказывал, как в 1932 году появилась сама идея существования нейтрино и как эта частица была обнаружена 25 лет спустя. Напомню, Райнес и Коуэн зарегистрировали взаимодействие антинейтрино с протоном . Но уже тогда многие ученые полагали, что нейтрино может быть нескольких типов. Нейтрино, активно взаимодействующее с электроном, назвали электронным, а нейтрино, взаимодействующее с мюоном , соответственно, мюонным. Экспериментаторам необходимо было разобраться - различаются ли эти два состояния или нет. Ледерман, Шварц и Стейнбергер провели выдающийся эксперимент. Они исследовали пучок пи-мезонов от ускорителя. Такие частицы охотно распадаются на мюон и нейтрино.

Если нейтрино действительно имеет разные сорта, то рождаться должно мюонное. Дальше все просто - на пути рожденных частиц ставим мишень и исследуем, как они взаимодействуют: с рождением электрона или мюона. Опыт однозначно показал, что электроны почти не рождаются.

Итак, теперь у нас есть два типа нейтрино! Мы готовы переходить к следующему шагу в обсуждении нейтринных осцилляций.

Это какое-то «неправильное» Солнце

В первых нейтринных экспериментах использовали искусственный источник: реактор или ускоритель. Это позволяло создавать очень мощные потоки частиц, ведь взаимодействия чрезвычайно редки. Но куда интереснее было зарегистрировать природные нейтрино. Особенный интерес представляет изучение потока частиц от Солнца.

К середине XX века уже было понятно, что в Солнце отнюдь не горят дрова - посчитали и выяснилось, что дров не хватит. Энергия выделяется при ядерных реакция в самом центре Солнца. Например, основной для нашей звезды процесс называется "протон-протонный цикл ", когда из четырех протонов собирается атом гелия.

Можно заметить, что на первом шаге должны рождаться интересующие нас частицы. И вот тут нейтринная физика может показать всю свою мощь! Для оптического наблюдения доступна только поверхность Солнца (фотосфера), а нейтрино беспрепятственно проходит через все слои нашей звезды. В результате регистрируемые частицы исходят из самого центра, где они и рождаются. Мы можем «наблюдать» непосредственно ядро Солнца. Естественно, такие исследования не могли не привлекать физиков. К тому же ожидаемый поток составлял почти 100 миллиардов частиц на квадратный сантиметр в секунду.

Первым такой эксперимент поставил Раймонд Дэвис в крупнейшем золотом руднике Америки - шахте Хоумстейк. Установку пришлось прятать глубоко под землю, чтобы защититься от мощного потока космических частиц. Нейтрино без проблем может пройти через полтора километра горной породы, а вот остальные частицы будут остановлены. Детектор представлял из себя огромную бочку, заполненную 600 тоннами тетрахлорэтилена - соединения 4 атомов хлора. Это вещество активно используется при химчистке и достаточно дешево.

Такой способ регистрации предложил Бруно Максимович Понтекорво. При взаимодействии с нейтрино хлор превращается в нестабильный изотоп аргона,

который захватывает электрон с нижней орбитали и распадается обратно в среднем за 50 дней.

Но! В день ожидается всего около 5 взаимодействий нейтрино. За пару недель наберется всего 70 народившихся атомов аргона, и их надо найти! Найти несколько десятков атомов в 600 тонной бочке. Поистине фантастическая задача. Раз в два месяца Дэвис продувал бочку гелием, выдувая образовавшийся аргон. Многократно очищенный газ помещался в маленький детектор (счетчик Гейгера), где считалось количество распадов получившегося аргона. Так измерялось количество нейтринных взаимодействий.

Почти сразу же оказалось, что поток нейтрино от Солнца почти в три раза ниже ожидаемого, что произвело большой фурор в физике. В 2002 году Дэвис совместно с Косиба-сан разделили Нобелевскую премию за весомый вклад в астрофизику, в части обнаружения космического нейтрино.

Небольшая ремарка: Дэвис регистрировал нейтрино не от протон-протонной реакции, которую я описал выше, а от чуть более сложных и редких процессов с бериллием и бором, но сути это не меняет.

Кто виноват и что делать?

Итак, нейтринный поток в три раза меньший, чем ожидалось. Почему? Можно предложить следующие варианты:

Эти непостоянные нейтрино

За год до получения результатов эксперимента Дэвиса уже упоминавшийся Бруно Понтекорво разрабатывает теорию, как именно нейтрино могут менять свой тип в вакууме. Одно из следствий - у разных типов нейтрино должна быть разная масса. И с какой это стати частицы должны вот так вот на лету взять и поменять свою массу, которая, вообще говоря, должна сохраняться? Давайте разбираться.

Без небольшого введения в квантовую теорию нам не обойтись, но я постараюсь сделать это объяснение максимально прозрачным. Понадобится только базовая геометрия. Состояние системы описывается «вектором состояния». Раз есть вектор, значит должен быть и базис. Давайте рассмотрим аналогию с цветовым пространством. Наше «состояние» - это зеленый цвет. В базисе RGB мы запишем этот вектор как (0, 1, 0). Но вот в базисе CMYK почти тот же самый цвет будет записываться уже по-другому (0.63, 0, 1, 0). Очевидно, что у нас нет и не может быть «главного» базиса. Для разных нужд: изображения на мониторе или полиграфии, мы должны использовать свою систему координат.

Какие же базисы будут для нейтрино? Вполне логично разложить нейтринный поток на разные типы: электронное (), мюонное () и тау (). Если у нас из Солнца летит поток исключительно электронных нейтрино, то это состояние (1, 0, 0) в таком базисе. Но как мы уже обсуждали, нейтрино могут быть массивными. Причем обладать разными массами. А значит можно разложить поток нейтрино и по массовым состояниям: с массами соответственно.

Вся соль осцилляций в том, что эти базисы не совпадают! Синим на картинке показаны типы (сорта) нейтрино, а красным состояния с разными массами.

То есть, если в распаде нейтрона появилось электронное нейтрино, то появились сразу три массовых состояния (спроектировали на ).

Но если у этих состояний чуть-чуть разные массы, то и энергии будут слегка отличаться. А раз отличаются энергии, то и распространяться в пространстве они будут по-разному. На картинке показано, как именно будут эволюционировать эти три состояния во времени.


(с) www-hep.physics.wm.edu

На картинке движение частицы показаны в виде волны. Такой представление называется волной де Бройля , или волной вероятности зарегистрировать ту или иную частицу.

Взаимодействует же нейтрино в зависимости от типа (). Поэтому, когда мы хотим посчитать, как же нейтрино себя проявит, нужно спроектировать наш вектор состояния на (). И таким образом получится вероятность зарегистрировать тот или иной тип нейтрино. Вот такие волны вероятности мы получим для электронного нейтрино в зависимости от пройденного расстояния:

Насколько сильно будет меняться тип задается относительными углами описанных систем координат (показаны на предыдущем рисунке ) и разницами масс.

Если вас не пугает терминология квантовой механики, и вам хватило терпения дочитать до этого момента, то простое формальное описание можно найти в Википедии .

А как на самом деле?

Теория это, конечно, хорошо. Но до сих пор мы не можем определиться какой из двух вариантов реализован в природе: Солнце «не такое» или нейтрино «не такие». Нужны новые эксперименты, которые окончательно покажут природу этого интересного эффекта. Буквально в двух словах опишу основные установки, которые сыграли ключевую роль в исследованиях.

Обсерватория Камиока

История этой обсерватории начинается с того, что здесь пытались найти распад протона. Именно поэтому детектор получил соответствующее название - «Камиоканде» (Kamioka Nucleon Decay Experiment). Но ничего не обнаружив, японцы быстро переориентировались на перспективное направление: исследование атмосферных и солнечных нейтрино. О том, откуда берутся солнечные мы уже обсуждали. Атмосферные рождаются в распадах мюонов и пи-мезонов в атмосфере Земли. И пока долетают до Земли успевают осциллировать.

Детектор начал набирать данные в 1987. С датами им дико повезло, но об этом следующая статья:) Установка представляла из себя огромную бочку, заполненную чистейшей водой. Стенки были замощены фотоумножителями. Основная реакция, по которой ловили нейтрино это выбивание электрона из молекул воды:

Быстролетящий свободный электрон светится в воде темно голубым цветом. Это излучение и регистрировали ФЭУ на стенках. Впоследствии установка была усовершенствована до Супер-Камиоканде и продолжила свою работу.

Эксперимент подтвердил дефицит солнечных нейтрино и добавил к этому дефицит атмосферных нейтрино.

Галлиевые эксперименты

Почти сразу после запуска Какиоканде в 1990 начали работу два галлиевых детектора. Один из них располагался в Италии, под горой Гранд-Сассо в лаборатории с одноименным названием. Второй - на Кавказе, в Баксанском ущелье, под горой Андырчи. Специально для этой лаборатории в ущелье был построен поселок Нейтрино. Сам метод был предложен Вадимом Кузьминым, вдохновленным идеями Понтекорво, еще в 1964 году.

При взаимодействии с нейтрино галлий превращается в нестабильный изотоп германия, который распадается обратно в галлий в среднем за 16 дней. За месяц образуется несколько десятков атомов германия, которые нужно очень тщательно извлечь из галлия, поместить в небольшой детектор и сосчитать количество распадов обратно в галлий. Преимущество галлиевых экспериментов в том, что они могут ловить нейтрино очень низких энергий, недоступные другим установкам.

Все вышеописанные эксперименты показали, что мы видим меньше нейтрино, чем ожидали, но это не доказывает присутствие осцилляций. Проблема по-прежнему может быть в неправильной модели Солнца. Эксперимент SNO поставил последнюю и жирную точку в проблеме солнечных нейтрино.

Обсерватория Садбери

В шахте Крейгтон канадцы построили огромную «звезду смерти».

На двухкилометровой глубине разместили акриловую сферу, окруженную ФЭУ и заполненную 1000 тоннами тяжелой воды. Такая вода отличается от обычной тем, что обычный водород с одним протоном заменен на дейтерий - соединение протона и нейтрона. Именно дейтерий и сыграл ключевую роль в решении проблем солнечных нейтрино. Такая установка могла регистрировать, как взаимодействия электронных нейтрино, так и взаимодействия всех остальных типов! Электронные нейтрино будут разрушать дейтерий с рождением электрона, при этом все другие виды электрон родить не могут. Зато они могут слегка «толкнуть» дейтерий так, чтобы он развалился на составные части, а нейтрино полетит себе дальше.

Быстрый электрон, как мы уже обсуждали, светится при движении в среде, а нейтрон достаточно быстро должен захватываться дейтерием, излучив при этом фотон. Все это можно зарегистрировать с помощью фотоумножителей. Физики наконец получили возможность измерить полный поток частиц от Солнца. Если окажется, что он совпадает с ожиданиями, значит электронные нейтрино переходят в другие, а если он меньше ожидаемого, то виновата неправильная модель Солнца.

Эксперимент начал работу в 1999 году, и измерения уверенно указали на то, что наблюдается дефицит именно электронной составляющей

Напомню, что в звезде могут рождаться почти исключительно электронные нейтрино. А значит остальные получились в процессе осцилляций! За эти работы Артур Макдональд (SNO) и Кадзита-сан (Камиоканде) получили Нобелевскую премию 2015 года.

Почти сразу же, в начале нулевых, к исследованиям осцилляций приступили и другие эксперименты. Этот эффект смогли наблюдать и для рукотворных нейтрино. Японский эксперимент KamLAND, расположенный все там же, в Камиоке, уже в 2002 наблюдал осцилляции электронных антинейтрино от реактора. И второй, тоже японский, эксперимент K2K впервые зарегистрировал изменение типа у нейтрино, созданных с помощью ускорителя. В качестве дальнего детектора использовали небезызвестный Супер-Камиоканде.

Сейчас все больше и больше установок занимаются исследованием этого эффекта. Строятся детекторы на Байкале, в Средиземном море, на Южном Полюсе. Были установки и вблизи Северного полюса. Все они ловят нейтрино космического происхождения. Работают ускорительные и реакторные эксперименты. Уточняются параметры самих осцилляций, делаются попытки узнать что-то о величине масс нейтрино. Есть указания на то, что именно при помощи этого эффекта можно объяснить преобладание вещества над антивеществом в нашей Вселенной!

Под спойлером небольшая ремарка для самых вдумчивых.

Премия 2015 года была выдана с формулировкой «за открытие нейтринных осцилляций, показывающих наличие у них массы». В кругу физиков такое высказывание вызвало некоторое замешательство . При измерении солнечных нейтрино (эксперимент SNO) мы нечувствительны к разнице масс. Вообще говоря, масса может быть нулевая, а осцилляции останутся. Такое поведение объясняется взаимодействием нейтрино с веществом Солнца (эффект Михеева-Смирнова-Вольфенштейна). То есть осцилляции солнечных нейтрино есть, их открытие это фундаментальный прорыв, но вот на наличие массы это еще ни разу не указывало. Фактически, нобелевский комитет выдал премию с неправильной формулировкой.
Осцилляции именно в вакууме проявляют себя для атмосферных, реакторных и ускорительных экспериментов. Добавить метки

Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы собственного времени .

Идея нейтринных осцилляций была впервые выдвинута советско-итальянским физиком Б. М. Понтекорво в 1957 году .

Наличие нейтринных осцилляций важно для решения проблемы солнечных нейтрино .

Осцилляции в вакууме

Предполагается, что такие превращения - следствие наличия у нейтрино массы или (для случая превращений нейтрино↔антинейтрино) несохранения лептонного заряда при высоких энергиях .

См. также

  • Матрица Понтекорво - Маки - Накагавы - Сакаты
  • Осцилляции нейтральных каонов
  • Осцилляции B-мезонов

Примечания

Литература

  • Ю. Г. Куденко , «Исследование нейтринных осцилляций в ускорительных экспериментах с длинной базой» , Успехи физических наук , вып. 6, 2011.
  • С. М. Биленький , «Массы, смешивание и осцилляции нейтрино» , Успехи физических наук 173 1171-1186 (2003)

Wikimedia Foundation . 2010 .

Смотреть что такое "Нейтринные осцилляции" в других словарях:

    Нейтринные осцилляции превращения нейтрино (электронного, мюонного или таонного) в нейтрино другого сорта (поколения), или же в антинейтрино. Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы… … Википедия

    - (v), лёгкая (возможно, безмассовая) электрически нейтральная ч ца со спином 1/2 (в ед. ћ), участвующая только в слабом и гравитац. вз ствиях. Н. принадлежит к классу лептонов, а по статистич. св вам явл. фермионом. Известны три типа Н.:… … Физическая энциклопедия

Частицы определённого сорта в зависимости от прошедшего с момента создания частицы собственного времени .

Идея нейтринных осцилляций была впервые выдвинута советско-итальянским физиком Б. М. Понтекорво в 1957 году .

Наличие нейтринных осцилляций важно для решения проблемы солнечных нейтрино .

Осцилляции в вакууме

Предполагается, что такие превращения - следствие наличия у нейтрино массы или (для случая превращений нейтрино↔антинейтрино) несохранения лептонного заряда при высоких энергиях .

Эксперименты

Осцилляции наблюдались для:

  • солнечных нейтрино (хлор-аргонный эксперимент Дэвиса, галлий-германиевые эксперименты SAGE , GALLEX /GNO , водно-черенковские эксперименты Kamiokande и SNO), сцинтилляционный эксперимент BOREXINO ;
  • атмосферных нейтрино (Kamiokande, IMB), возникающих при взаимодействии космических лучей с ядрами атомов атмосферных газов в атмосфере ;
  • реакторных антинейтрино (сцинтилляционный эксперимент KamLAND , Daya Bay , Double Chooz , RENO);
  • ускорительных нейтрино (эксперимент K2K (англ. KEK To Kamioka ) наблюдал уменьшение количества мюонных нейтрино после прохождения 250 км в толще вещества , эксперимент OPERA обнаружил в 2010 году осцилляции мюонных нейтрино в тау-нейтрино с последующим рождением тау-лептонов);

Осцилляции с превращением мюонных нейтрино, а также антинейтрино, в электронные исследуются в настоящее время в эксперименте MiniBooNE , поставленном по условиям эксперимента LSND . Предварительные результаты эксперимента могут указывать на разницу в осцилляциях нейтрино и антинейтрино .

См. также

Напишите отзыв о статье "Нейтринные осцилляции"

Примечания

Литература

  • С. М. Биленький // УФН . - 2003. - Т. 173 . - С. 1171-1186 . - DOI :10.3367/UFNr.0173.200311b.1171 .
  • Ю. Г. Куденко // УФН . - 2011. - Т. 181 . - С. 569–594 . - DOI :10.3367/UFNr.0181.201106a.0569 .
  • Ю. Г. Куденко // УФН . - 2013. - Т. 183 . - С. 1225–1230 . - DOI :10.3367/UFNr.0183.201311d.1225 .
  • Юрий Куденко . . elementy.ru , «Троицкий вариант» №13(82) (5 июля 2011 года). Проверено 18 января 2013.
  • G. Bellini, L. Ludhova, G. Ranucci, F.L. Villante Neutrino oscillations (англ.) . - 2013. - arXiv :1310.7858 .

Отрывок, характеризующий Нейтринные осцилляции

Долохов усмехнулся.
– Ты лучше не беспокойся. Мне что нужно, я просить не стану, сам возьму.
– Да что ж, я так…
– Ну, и я так.
– Прощай.
– Будь здоров…
… и высоко, и далеко,
На родиму сторону…
Жерков тронул шпорами лошадь, которая раза три, горячась, перебила ногами, не зная, с какой начать, справилась и поскакала, обгоняя роту и догоняя коляску, тоже в такт песни.

Возвратившись со смотра, Кутузов, сопутствуемый австрийским генералом, прошел в свой кабинет и, кликнув адъютанта, приказал подать себе некоторые бумаги, относившиеся до состояния приходивших войск, и письма, полученные от эрцгерцога Фердинанда, начальствовавшего передовою армией. Князь Андрей Болконский с требуемыми бумагами вошел в кабинет главнокомандующего. Перед разложенным на столе планом сидели Кутузов и австрийский член гофкригсрата.
– А… – сказал Кутузов, оглядываясь на Болконского, как будто этим словом приглашая адъютанта подождать, и продолжал по французски начатый разговор.
– Я только говорю одно, генерал, – говорил Кутузов с приятным изяществом выражений и интонации, заставлявшим вслушиваться в каждое неторопливо сказанное слово. Видно было, что Кутузов и сам с удовольствием слушал себя. – Я только одно говорю, генерал, что ежели бы дело зависело от моего личного желания, то воля его величества императора Франца давно была бы исполнена. Я давно уже присоединился бы к эрцгерцогу. И верьте моей чести, что для меня лично передать высшее начальство армией более меня сведущему и искусному генералу, какими так обильна Австрия, и сложить с себя всю эту тяжкую ответственность для меня лично было бы отрадой. Но обстоятельства бывают сильнее нас, генерал.
И Кутузов улыбнулся с таким выражением, как будто он говорил: «Вы имеете полное право не верить мне, и даже мне совершенно всё равно, верите ли вы мне или нет, но вы не имеете повода сказать мне это. И в этом то всё дело».
Австрийский генерал имел недовольный вид, но не мог не в том же тоне отвечать Кутузову.
– Напротив, – сказал он ворчливым и сердитым тоном, так противоречившим лестному значению произносимых слов, – напротив, участие вашего превосходительства в общем деле высоко ценится его величеством; но мы полагаем, что настоящее замедление лишает славные русские войска и их главнокомандующих тех лавров, которые они привыкли пожинать в битвах, – закончил он видимо приготовленную фразу.
Кутузов поклонился, не изменяя улыбки.
– А я так убежден и, основываясь на последнем письме, которым почтил меня его высочество эрцгерцог Фердинанд, предполагаю, что австрийские войска, под начальством столь искусного помощника, каков генерал Мак, теперь уже одержали решительную победу и не нуждаются более в нашей помощи, – сказал Кутузов.
Генерал нахмурился. Хотя и не было положительных известий о поражении австрийцев, но было слишком много обстоятельств, подтверждавших общие невыгодные слухи; и потому предположение Кутузова о победе австрийцев было весьма похоже на насмешку. Но Кутузов кротко улыбался, всё с тем же выражением, которое говорило, что он имеет право предполагать это. Действительно, последнее письмо, полученное им из армии Мака, извещало его о победе и о самом выгодном стратегическом положении армии.
– Дай ка сюда это письмо, – сказал Кутузов, обращаясь к князю Андрею. – Вот изволите видеть. – И Кутузов, с насмешливою улыбкой на концах губ, прочел по немецки австрийскому генералу следующее место из письма эрцгерцога Фердинанда: «Wir haben vollkommen zusammengehaltene Krafte, nahe an 70 000 Mann, um den Feind, wenn er den Lech passirte, angreifen und schlagen zu konnen. Wir konnen, da wir Meister von Ulm sind, den Vortheil, auch von beiden Uferien der Donau Meister zu bleiben, nicht verlieren; mithin auch jeden Augenblick, wenn der Feind den Lech nicht passirte, die Donau ubersetzen, uns auf seine Communikations Linie werfen, die Donau unterhalb repassiren und dem Feinde, wenn er sich gegen unsere treue Allirte mit ganzer Macht wenden wollte, seine Absicht alabald vereitelien. Wir werden auf solche Weise den Zeitpunkt, wo die Kaiserlich Ruseische Armee ausgerustet sein wird, muthig entgegenharren, und sodann leicht gemeinschaftlich die Moglichkeit finden, dem Feinde das Schicksal zuzubereiten, so er verdient». [Мы имеем вполне сосредоточенные силы, около 70 000 человек, так что мы можем атаковать и разбить неприятеля в случае переправы его через Лех. Так как мы уже владеем Ульмом, то мы можем удерживать за собою выгоду командования обоими берегами Дуная, стало быть, ежеминутно, в случае если неприятель не перейдет через Лех, переправиться через Дунай, броситься на его коммуникационную линию, ниже перейти обратно Дунай и неприятелю, если он вздумает обратить всю свою силу на наших верных союзников, не дать исполнить его намерение. Таким образом мы будем бодро ожидать времени, когда императорская российская армия совсем изготовится, и затем вместе легко найдем возможность уготовить неприятелю участь, коей он заслуживает».]
Кутузов тяжело вздохнул, окончив этот период, и внимательно и ласково посмотрел на члена гофкригсрата.
– Но вы знаете, ваше превосходительство, мудрое правило, предписывающее предполагать худшее, – сказал австрийский генерал, видимо желая покончить с шутками и приступить к делу.
Он невольно оглянулся на адъютанта.
– Извините, генерал, – перебил его Кутузов и тоже поворотился к князю Андрею. – Вот что, мой любезный, возьми ты все донесения от наших лазутчиков у Козловского. Вот два письма от графа Ностица, вот письмо от его высочества эрцгерцога Фердинанда, вот еще, – сказал он, подавая ему несколько бумаг. – И из всего этого чистенько, на французском языке, составь mеmorandum, записочку, для видимости всех тех известий, которые мы о действиях австрийской армии имели. Ну, так то, и представь его превосходительству.
Князь Андрей наклонил голову в знак того, что понял с первых слов не только то, что было сказано, но и то, что желал бы сказать ему Кутузов. Он собрал бумаги, и, отдав общий поклон, тихо шагая по ковру, вышел в приемную.

Министерство образования республики Беларусь

Гродненский университет им. Я.Купалы

Кафедра теоретической физики

Курсовая работа

Тема: Нейтринные осцилляции.

Выполнил: студент 5-го курса Шаркунова В.А.

Проверил: Сенько Анна Николаевна

В работе показано, что для объяснения данных экспериментов, можно сделать предположение о существовании нейтринных осцилляциях, и значит нейтринных масс. Рассмотрена теория нейтринных осцилляций. Нейтрино рассматривается в рамках лево-правой модели. В двухфлейворном приближении получены возможные иерархии масс нейтрино.

Аннотация...................................................................................................... 2

Введение......................................................................................................... 4

1. Осцилляции нейтрино............................................................................. 7

1.1. Вакуумные нейтринные осцилляции........................................................................................................................... 7

1.2. Осцилляции нейтрино в сплошной среде................................................................................................................. 11

2. Указание на не нулевую нейтринную массу..................................... 15

2.1. Проблема солнечных нейтрино.................................................................................................................................. 15

2.2. Атмосферные нейтрино................................................................................................................................................. 19

2.3. Результаты эксперимента LSND (Los Alamos liquid scintillation neutrino detector)....................................... 21

2.4. Горячая тёмная материя Вселенной......................................................................................................................... 22

2.5. Двойной β-распад........................................................................................................................................................... 23

3. Некоторые эксперименты по регистрации нейтрино....................... 26

3.1. Детекторы солнечных нейтрино................................................................................................................................ 26

3.2. Эксперимент Homestake............................................................................................................................................... 28

3.3. Эксперименты Kamiokande и Super-Kamiokande.................................................................................................. 29

3.4. Эксперименты Gallex и SAGE...................................................................................................................................... 31

4. Иерархия масс майорановских нейтрино в лево-правой модели.. 32

Заключение.................................................................................................. 35

Литература................................................................................................... 36

Нейтрино – элементарная частица, рождающаяся в некоторых ядерных реакциях. Во Вселенной существует несколько мощных источников нейтрино.

1) Солнце и другие звезды в устойчивом состоянии.

2) Суперновые, которые теряют часть своей энергии за несколько секунд в форме нейтрино.

3) Некоторые массивные астрофизические объекты (квазары, активные ядра галактик…), которые являются источниками нейтрино высокой энергии, составляющих важную часть космических лучей.

Существуют атмосферные нейтрино – это нейтрино рождающиеся при столкновении космических лучей с ядрами земной атмосферы, а так же нейтрино рождающиеся при бета распаде ядер в атомных реакторах и земные нейтрино. Мы погружены в реликтовые нейтрино (около 500 штук в кубическом сантиметре), появившихся во время Большого Взрыва 15 миллиардов лет назад.

Рисунок 1. Поток нейтрино от различных источников.

Существует три вида, или флейвора, нейтрино: электронное, мюонное и тауонное. До сих пор не ясно отличается ли нейтрино от антинейтрино. Существуют теории в которых они различны. В этом случае говорят о дираковских нейтрино. В других теориях нейтрино и антинейтрино не различимы, и тогда нейтрино называются майорановскими.

Независимо от того являются нейтрино майорновскими или дираковскими, мы не знаем, имеют ли нейтрино массу и магнитный момент. Эксперимент пока обеспечивает верхние пределы. Однако существуют указания на то, что нейтрино имеют массы. Для объяснения некоторых экспериментов выдвигается гипотеза о нейтринных осцилляциях. Осцилляции нейтрино – взаимопревращение различных типов нейтрино. В настоящее время имеется три экспериментальных факта в поддержку нейтринных осцилляций.

1) Поток солнечных

оказывается сильно подавленным по сравнению с предсказаниями существующих моделей Солнца.

2) Теоретическое отношение потоков атмосферных мюонных и электронных нейтрино к измеренным экспериментально, находится в противоречии с результатами экспериментов.

3) Изучение распадов движущихся

мезонов LSND коллаборацией показывает наличие как так и .

Для существования нейтринных осцилляций необходимо (но не достаточно), чтобы нейтрино имели отличные от нуля массы.

В минимальной стандартной модели не существует правостороннего нейтрино, и значит лептонное число не сохраняется. Таим образом нейтрино не обладает ни майорановской ни дираковской массами. Любое доказательство для ненулевой массы или угла смешивания является доказательством вне рамок стандартной модели. Кроме того, массы и углы смешивания являются фундаментальными параметрами, которые будут объяснены в окончательной теории фермионных масс. Лево-правая модель предсказывает существование нейтринной массы и приводит к смешиванию между состояниями с определенной массой как внутри, так и между нейтринными поколениями.

1. Осцилляции нейтрино.

Осцилляции нейтрино могут быть представлены аналогично более известному примеру прецессии спина в поперечном магнитном поле. Предположим, имеются частицы спина ½, чьи спины поляризованы вдоль z (или “вверх”). Луч проходит через область, где создано магнитное поле в направлении y. Спин “вверх” не является основным состоянием в этом магнитном поле. Из-за этого луч подвергается колебаниям (прецесси). Если рассмотреть луч после прохождения некоторого расстояния, можно обнаружить, что луч является суперпозицией спинов “вверх” и “вниз”.

Можно переформулировать последние утверждение иначе. Мы начинали с луча со спином “вверх”, но после прохождения некоторого расстояния, вероятность найти спин “вверх” в луче меньше единицы. Другими словами, существует истощение спина “вверх”. Осцилляции нейтрино представляют истощение, например солнечных

таким же образом, т.е. постулируется, что состояния, которые созданы или наблюдаются, не являются основными состояниями распространения.

1.1. Вакуумные нейтринные осцилляции.

Электронное нейтрино

- состояние, возникающие в распаде, где так же рождается позитрон . Мюонное нейтрино - состояние, полученное в распаде вместе с мюоном . Будем называть и состояния флэйвора. Из этого определения не очевидно, что эти состояния флэйвора – физические частицы. Вообще любые из них могут быть суперпозицией из различных физических частиц. Другими словами, состояние полученное в распаде должно иметь некоторую вероятность существования частицы и некоторую вероятность существования частицы . Будем называть эти состояния и , как частицы или физические состояния. Введём следующие обозначения: (1.1)

Во вторник, 6 октября, стало известно, что лауреатами Нобелевской премии по физике за 2015 год стали японец Такааки Кадзита и канадец Артур МакДональд за открытие осцилляций нейтрино.

Это уже четвертый "нобель" по физике, который вручается за работы по изучению этих загадочных частиц. В чем таинственность нейтрино, почему их так трудно обнаружить и что такое нейтринные осцилляции, мы расскажем в этой статье простым и доступным языком.

Рождение нейтрончика

В конце XIX века французский физик Анри Беккерель, изучая, как связаны люминесценция и рентгеновские лучи, случайно открыл радиоактивность. Оказалось, что одна из солей урана сама по себе испускает невидимое и таинственное излучение, которое не является рентгеновским. Затем выяснилось, что радиоактивность присуща именно урану, а не соединениям, в которые он входит, после чего была открыта радиоактивность и других элементов – таких, как торий, радий и так далее.

Спустя несколько лет британский физик Эрнест Резерфорд решил пропустить еще не изученное радиоактивное излучение через магнитное поле и обнаружил, что его можно разделить на три части. Одни лучи отклонялись в магнитном поле так же, как если бы состояли из положительно заряженных частиц, другие – как составленные из отрицательных, а третьи не отклонялись вовсе.

В итоге первые было решено назвать альфа-лучами, вторые – бета-лучами, а третьи – гамма-лучами. Впоследствии выяснилось, что гамма-лучи являются электромагнитным излучением высокой частоты (или потоком фотонов с высокой энергией), альфа-лучи – потоком ядер атомов гелия, то есть частиц, составленных из двух протонов и двух нейтронов, а бета-лучи – потоком электронов, хотя существуют также и позитронные бета-лучи (это зависит от типа бета-распада).

Если измерять энергию альфа-частиц и гамма-частиц, возникающих при соответствующем типе радиоактивного распада, то окажется, что она может принимать лишь некоторые дискретные значения. Это хорошо согласовывается с законами квантовой механики. Однако с электронами, излучаемыми при бета-распаде, ситуация наблюдалась иная – спектр их энергии был непрерывен. Иными словами, электрон мог нести совершенно любую энергию, ограниченную лишь типом распадающегося изотопа. Более того, в большинстве случаев оказывалось, что энергия электронов меньше той, какую предсказывала теория. Кроме того, энергия ядра, образованного после радиоактивного распада, также оказывалась меньше предсказанной.

Получалось, что при бета-распаде энергия буквально исчезала, нарушая фундаментальный физический принцип – закон сохранения энергии. Некоторые ученые, среди которых был и сам Нильс Бор, уже были готовы признать, что закон может и не работать в микромире, но немецкий физик Вольфганг Паули предложил решить эту проблему простым и довольно рискованным способом – предположить, что недостающую энергию уносит некоторая частица, которая не обладает электрическим зарядом, крайне слабо взаимодействует с веществом и поэтому не была до сих пор обнаружена.

Спустя несколько лет эту гипотезу взял на вооружение итальянский физик Энрико Ферми для теоретического объяснения бета-распада. К этому времени уже был открыт нейтрон и физики знали, что атомное ядро состоит не только из протонов. Было известно, что протоны и нейтроны в ядре удерживает так называемое сильное взаимодействие. Однако было до сих пор непонятно, почему при бета-распаде ядро излучает электрон, которого там в принципе нет.

Ферми предположил, что бета-распад похож на излучение возбужденным атомом фотона и электрон появляется в ядре именно в процессе распада. Один из нейтронов в ядре распадается на три частицы: протон, электрон и ту самую невидимую частицу, предсказанную Паули, которую Ферми по-итальянски назвал "нейтрино", то есть "нейтрончик", или маленький нейтрон. Как и нейтрон, нейтрино не имеет электрического заряда, также он не принимает участия и в сильном ядерном взаимодействии.

Теория Ферми оказалась успешной. Было открыто, что за бета-распад ответственно еще одно не известное доселе взаимодействие – слабое ядерное. Это то самое взаимодействие, в котором, помимо гравитационного, и участвуют нейтрино. Но из-за того что интенсивность и радиус этого взаимодействия очень малы, нейтрино остается по большей части невидимым для материи.

Можно представить нейтрино не слишком большой энергии, который летит сквозь лист железа. Для того чтобы эта частица со стопроцентной вероятностью оказалась задержана листом, его толщина должна равняться примерно 10^15 километров. Для сравнения: расстояние между Солнцем и центром нашей Галактики лишь на один порядок больше – около 10 16 километров.

Такая неуловимость нейтрино сильно затрудняет его наблюдение на практике. Поэтому экспериментально подтверждено существование нейтрино было лишь 20 лет спустя после теоретического предсказания – в 1953 году.

Три поколения нейтрино

Бета-распад может происходить двумя способами: с излучением электрона или позитрона. Вместе с электроном всегда также излучается антинейтрино, а вместе с позитроном – нейтрино. В середине ХХ века перед физиками встал вопрос: есть ли какое-либо отличие между нейтрино и антинейтрино? К примеру, фотон является античастицей для самого себя. А вот электрон совсем не тождественен своей античастице – позитрону.

На тождество нейтрино и антинейтрино указывало отсутствие у частицы электрического заряда. Однако с помощью тщательных экспериментов удалось выяснить, что нейтрино и антинейтрино все же различаются. Тогда для различения частиц пришлось ввести их собственный знак заряда – лептонное число. По соглашению ученых лептонам (частицам, не участвующим в сильном взаимодействии), в число которых входят и электроны с нейтрино, присваивается лептонное число +1. А антилептонам, среди которых есть и антинейтрино, присваивается число -1. Лептонное число при этом должно всегда сохраняться – это объясняет тот факт, что нейтрино всегда появляется только в паре с позитроном, а антинейтрино – с электроном. Они как бы уравновешивают друг друга, оставляя неизменным сумму лептонных чисел каждой частицы из всей системы.

В середине ХХ века физика элементарных частиц переживала настоящий бум – ученые одну за другой открывали новые частицы. Оказалось, что лептонов существует больше, чем считалось – помимо электрона и нейтрино, был открыт мюон (тяжелый электрон), а также мюонное нейтрино. Впоследствии ученые обнаружили еще и третье поколение лептонов – еще более тяжелые тау-лептон и тау-нейтрино. Стало ясно, что все лептоны и кварки образуют три поколения фундаментальных фермионов (частиц с полуцелым спином, из которых состоит материя).

Для различения трех поколений лептонов пришлось ввести так называемый флейворный лептонный заряд. Каждому из трех поколений лептонов (электрон и нейтрино, мюон и мюонное нейтрино, тау-лептон и тау-нейтрино) соответствует свой флейворный лептонный заряд, а сумма зарядов составляет общее лептонное число системы. Долгое время считалось, что лептонный заряд также всегда должен сохраняться. Оказалось, что в случае с нейтрино этого не происходит.

Правые и левые нейтрино

Каждая элементарная частица обладает такой квантово-механической характеристикой, как спин. Спин можно представить как количество вращательного движения частицы, хотя это описание очень условно. Спин может быть направлен в некоторую сторону относительно импульса частицы – параллельно ей или перпендикулярно. Во втором случае принято говорить о поперечной поляризации частицы, в первом – о продольной. При продольной поляризации также различают два состояния: когда спин направлен вместе с импульсом, и когда он направлен противоположно ему. В первом случае говорят, что частица обладает правой поляризацией, во втором – левой.

Долгое время в физике считался неоспоримым закон сохранения четности, который говорит о том, что в природе должна соблюдаться строгая зеркальная симметрия и частицы с правой поляризацией должны быть совершенно равноценны частицам с левой. Согласно этому закону, в любом пучке нейтрино можно было бы найти одинаковое количество правополяризованных и левополяризованных частиц.

Удивлению ученых не было предела, когда оказалось, что для нейтрино закон четности не соблюдается – в природе не существует правополяризованных нейтрино и левополяризованных антинейтрино. Все нейтрино имеют левую поляризацию, а антинейтрино – правую. Это является доказательством того удивительного факта, что слабое ядерное взаимодействие, ответственное за бета-распад, в котором и рождаются нейтрино, является хиральным – при зеркальном отражении его законы меняются (об этом мы уже подробно писали отдельно).

С точки зрения физики элементарных частиц середины ХХ века ситуация со строгой поляризацией говорила о том, что нейтрино – безмассовая частица, так как иначе пришлось бы признать несоблюдение закона сохранения лептонного заряда. Исходя из этого долгое время считалось, что нейтрино действительно не имеет массы. Но сегодня мы знаем, что это не так.

Неуловимая масса

Нейтрино в огромном количестве проносятся через толщу Земли и прямо через наше тело. Они рождаются в термоядерных реакциях на Солнце и других звездах, в атмосфере, в ядерных реакторах, даже внутри нас самих, в результате радиоактивного распада некоторых изотопов. До сих пор летят через Вселенную реликтовые нейтрино, рожденные после Большого взрыва. Но их чрезвычайно слабое взаимодействие с веществом определяет то, что мы их совершенно не замечаем.

Тем не менее за годы исследования нейтрино физики научились с помощью хитрых методов их регистрировать. И при наблюдении за потоком нейтрино, рожденных на Солнце, ученым открылся странный факт – со светила этих частиц прилетает примерно в три раза меньше, чем это предсказывает теория. Здесь нужно уточнить, что речь идет именно об одном типе нейтрино – электронных нейтрино.

Для объяснения этого факта пытались привлекать различные гипотезы о внутреннем строении Солнца, которое способно задерживать недостающие нейтрино, однако эти попытки были безуспешны. Факту оставалось лишь одно теоретическое объяснение – по дороге от Солнца до Земли частицы превращаются из одного типа нейтрино в другой. Частица, рожденная как электронное нейтрино, на своем пути испытывает осцилляции, с определенной периодичностью проявляя себя как мюонное или тау-нейтрино. Поэтому на Землю с Солнца прилетают не только электронные нейтрино, но и мюонные и тау-нейтрино. Гипотезу нейтринных осцилляций еще в 1957 году выдвинул советско-итальянский физик Бруно Понтекорво. Такие превращения нейтрино из одного типа в другой предполагали одно необходимое условие – наличие у нейтрино массы. Все проведенные с нейтрино эксперименты показывали, что масса этой частицы пренебрежительно мала, но строгого доказательства, что она равна нулю, получено не было. Значит, возможность для нейтринных осцилляций действительно оставалась.

Открытие осцилляций

Подтверждение существования нейтринных осцилляций удалось получить благодаря наблюдениям за солнечными и атмосферными нейтрино на экспериментальной установке "Суперкамиоканде" в Японии и в нейтринной обсерватории в Садбери в Канаде.

Японцы для регистрации нейтрино выстроили впечатляющее сооружение – огромный резервуар (40 на 40 метров) из нержавеющей стали, заполненный 50 тысячами тонн чистейшей воды. Резервуар был окружен более чем 11 тысячами фотоумножителей, которые должны были регистрировать мельчайшие вспышки черенковского излучения, рождающиеся при выбивании электронов из атомов какими-либо нейтрино. Учитывая то, что нейтрино крайне слабо взаимодействует с веществом, из миллиардов пролетающих через резервуар частиц регистрируются считанные единицы. Учитывая еще и то, что исследователям приходится отсеивать эти события из большого фона (ведь через огромный резервуар пролетает еще очень много совершенно других частиц), работа ими была проведена колоссальная.

Японский детектор получил возможность отличать электронные и мюонные нейтрино по характеру вызываемого ими излучения. Кроме того, ученые знали, что большинство мюонных нейтрино рождаются в атмосфере при столкновении частиц воздуха с космическими лучами. Благодаря этому они обнаружили следующую закономерность: чем дольше пучки нейтрино преодолевают расстояния, тем меньше среди них мюонных нейтрино. Это значило, что по пути некоторые из мюонных нейтрино превращаются в другие нейтрино.

Окончательное доказательство существования нейтринных осцилляций было получено в 1993 году в эксперименте в Садбери. По сути, канадская установка была похожа на японскую – огромный и не менее впечатляющий резервуар с водой под землей и множество детекторов черенковского излучения. Однако она уже была способна различать все три типа нейтрино: электронные, мюонные и тау-нейтрино. В результате было установлено, что общее число прилетающих с Солнца нейтрино не изменяются и хорошо согласуются с теорией, а недостаток электронных нейтрино вызван именно их осцилляцией. Причем, согласно статистическим данным, нейтрино в большей степени испытывают осцилляции при прохождении через вещество, чем через вакуум, так как большее количество электронных нейтрино прилетало в детектор днем, чем ночью, когда рожденным на Солнце частицам приходилось преодолевать всю толщу Земли.

Согласно сегодняшним представлениям, нейтринные осцилляции являются доказательством наличия у этих частиц массы, хотя точное значение массы до сих пор неизвестно. Физики знают лишь ее верхнюю границу – нейтрино как минимум в тысячу раз легче, чем электрон. Выяснение точной массы нейтрино является следующей большой задачей физиков, работающих в этом направлении, и не исключено, что следующий "нобель" за нейтрино будет вручен именно за это достижение.

Публикации по теме