Программы для анализа сети windows. Сетевые анализаторы

Анализаторы сетевых пакетов, или снифферы, первоначально были разработаны как средство решения сетевых проблем. Они умеют перехватывать, интерпретировать и сохранять для последующего анализа пакеты, передаваемые по сети. С одной стороны, это позволяет системным администраторам и инженерам службы технической поддержки наблюдать за тем, как данные передаются по сети, диагностировать и устранять возникающие проблемы. В этом смысле пакетные снифферы представляют собой мощный инструмент диагностики сетевых проблем. С другой стороны, подобно многим другим мощным средствам, изначально предназначавшимся для администрирования, с течением времени снифферы стали применяться абсолютно для других целей. Действительно, сниффер в руках злоумышленника представляет собой довольно опасное средство и может использоваться для завладения паролями и другой конфиденциальной информацией. Однако не стоит думать, что снифферы — это некий магический инструмент, посредством которого любой хакер сможет легко просматривать конфиденциальную информацию, передаваемую по сети. И прежде чем доказать, что опасность, исходящая от снифферов, не столь велика, как нередко преподносят, рассмотрим более детально принципы их функционирования.

Принципы работы пакетных снифферов

Дальнейшем в рамках данной статьи мы будем рассматривать только программные снифферы, предназначенные для сетей Ethernet. Сниффер — это программа, которая работает на уровне сетевого адаптера NIC (Network Interface Card) (канальный уровень) и скрытым образом перехватывает весь трафик. Поскольку снифферы работают на канальном уровне модели OSI, они не должны играть по правилам протоколов более высокого уровня. Снифферы обходят механизмы фильтрации (адреса, порты и т.д.), которые драйверы Ethernet и стек TCP/IP используют для интерпретации данных. Пакетные снифферы захватывают из провода все, что по нему приходит. Снифферы могут сохранять кадры в двоичном формате и позже расшифровывать их, чтобы раскрыть информацию более высокого уровня, спрятанную внутри (рис. 1).

Для того чтобы сниффер мог перехватывать все пакеты, проходящие через сетевой адаптер, драйвер сетевого адаптера должен поддерживать режим функционирования promiscuous mode (беспорядочный режим). Именно в этом режиме работы сетевого адаптера сниффер способен перехватывать все пакеты. Данный режим работы сетевого адаптера автоматически активизируется при запуске сниффера или устанавливается вручную соответствующими настройками сниффера.

Весь перехваченный трафик передается декодеру пакетов, который идентифицирует и расщепляет пакеты по соответствующим уровням иерархии. В зависимости от возможностей конкретного сниффера представленная информация о пакетах может впоследствии дополнительно анализироваться и отфильтровываться.

Ограничения использования снифферов

аибольшую опасность снифферы представляли в те времена, когда информация передавалась по сети в открытом виде (без шифрования), а локальные сети строились на основе концентраторов (хабов). Однако эти времена безвозвратно ушли, и в настоящее время использование снифферов для получения доступа к конфиденциальной информации — задача отнюдь не из простых.

Дело в том, что при построении локальных сетей на основе концентраторов существует некая общая среда передачи данных (сетевой кабель) и все узлы сети обмениваются пакетами, конкурируя за доступ к этой среде (рис. 2), причем пакет, посылаемый одним узлом сети, передается на все порты концентратора и этот пакет прослушивают все остальные узлы сети, но принимает его только тот узел, которому он адресован. При этом если на одном из узлов сети установлен пакетный сниффер, то он может перехватывать все сетевые пакеты, относящиеся к данному сегменту сети (сети, образованной концентратором).

Коммутаторы являются более интеллектуальными устройствами, чем широковещательные концентраторы, и изолируют сетевой трафик. Коммутатор знает адреса устройств, подключенных к каждому порту, и передает пакеты только между нужными портами. Это позволяет разгрузить другие порты, не передавая на них каждый пакет, как это делает концентратор. Таким образом, посланный неким узлом сети пакет передается только на тот порт коммутатора, к которому подключен получатель пакета, а все остальные узлы сети не имеют возможности обнаружить данный пакет (рис. 3).

Поэтому если сеть построена на основе коммутатора, то сниффер, установленный на одном из компьютеров сети, способен перехватывать только те пакеты, которыми обменивается данный компьютер с другими узлами сети. В результате, чтобы иметь возможность перехватывать пакеты, которыми интересующий злоумышленника компьютер или сервер обменивается с остальными узлами сети, необходимо установить сниффер именно на этом компьютере (сервере), что на самом деле не так-то просто. Правда, следует иметь в виду, что некоторые пакетные снифферы запускаются из командной строки и могут не иметь графического интерфейса. Такие снифферы, в принципе, можно устанавливать и запускать удаленно и незаметно для пользователя.

Кроме того, необходимо также иметь в виду, что, хотя коммутаторы изолируют сетевой трафик, все управляемые коммутаторы имеют функцию перенаправления или зеркалирования портов. То есть порт коммутатора можно настроить таким образом, чтобы на него дублировались все пакеты, приходящие на другие порты коммутатора. Если в этом случае к такому порту подключен компьютер с пакетным сниффером, то он может перехватывать все пакеты, которыми обмениваются компьютеры в данном сетевом сегменте. Однако, как правило, возможность конфигурирования коммутатора доступна только сетевому администратору. Это, конечно, не означает, что он не может быть злоумышленником, но у сетевого администратора существует множество других способов контролировать всех пользователей локальной сети, и вряд ли он будет следить за вами столь изощренным способом.

Другая причина, по которой снифферы перестали быть настолько опасными, как раньше, заключается в том, что в настоящее время наиболее важные данные передаются в зашифрованном виде. Открытые, незашифрованные службы быстро исчезают из Интернета. К примеру, при посещении web-сайтов все чаще используется протокол SSL (Secure Sockets Layer); вместо открытого FTP используется SFTP (Secure FTP), а для других служб, которые не применяют шифрование по умолчанию, все чаще используются виртуальные частные сети (VPN).

Итак, те, кто беспокоится о возможности злонамеренного применения пакетных снифферов, должны иметь в виду следующее. Во-первых, чтобы представлять серьезную угрозу для вашей сети, снифферы должны находиться внутри самой сети. Во-вторых, сегодняшние стандарты шифрования чрезвычайно затрудняют процесс перехвата конфиденциальной информации. Поэтому в настоящее время пакетные снифферы постепенно утрачивают свою актуальность в качестве инструментов хакеров, но в то же время остаются действенным и мощным средством для диагностирования сетей. Более того, снифферы могут с успехом использоваться не только для диагностики и локализации сетевых проблем, но и для аудита сетевой безопасности. В частности, применение пакетных анализаторов позволяет обнаружить несанкционированный трафик, обнаружить и идентифицировать несанкционированное программное обеспечение, идентифицировать неиспользуемые протоколы для удаления их из сети, осуществлять генерацию трафика для испытания на вторжение (penetration test) с целью проверки системы защиты, работать с системами обнаружения вторжений (Intrusion Detection System, IDS).

Обзор программных пакетных снифферов

се программные снифферы можно условно разделить на две категории: снифферы, поддерживающие запуск из командной строки, и снифферы, имеющие графический интерфейс. При этом отметим, что существуют снифферы, которые объединяют в себе обе эти возможности. Кроме того, снифферы отличаются друг от друга протоколами, которые они поддерживают, глубиной анализа перехваченных пакетов, возможностями по настройке фильтров, а также возможностью совместимости с другими программами.

Обычно окно любого сниффера с графическим интерфейсом состоит их трех областей. В первой из них отображаются итоговые данные перехваченных пакетов. Обычно в этой области отображается минимум полей, а именно: время перехвата пакета; IP-адреса отправителя и получателя пакета; MAC-адреса отправителя и получателя пакета, исходные и целевые адреса портов; тип протокола (сетевой, транспортный или прикладного уровня); некоторая суммарная информация о перехваченных данных. Во второй области выводится статистическая информация об отдельном выбранном пакете, и, наконец, в третьей области пакет представлен в шестнадцатеричном виде или в символьной форме — ASCII.

Практически все пакетные снифферы позволяют производить анализ декодированных пакетов (именно поэтому пакетные снифферы также называют пакетными анализаторами, или протокольными анализаторами). Сниффер распределяет перехваченные пакеты по уровням и протоколам. Некоторые анализаторы пакетов способны распознавать протокол и отображать перехваченную информацию. Этот тип информации обычно отображается во второй области окна сниффера. К примеру, любой сниффер способен распознавать протокол TCP, а продвинутые снифферы умеют определять, каким приложением порожден данный трафик. Большинство анализаторов протоколов распознают свыше 500 различных протоколов и умеют описывать и декодировать их по именам. Чем больше информации в состоянии декодировать и представить на экране сниффер, тем меньше придется декодировать вручную.

Одна из проблем, с которой могут сталкиваться анализаторы пакетов, — невозможность корректной идентификации протокола, использующего порт, отличный от порта по умолчанию. К примеру, с целью повышения безопасности некоторые известные приложения могут настраиваться на применение портов, отличных от портов по умолчанию. Так, вместо традиционного порта 80, зарезервированного для web-сервера, данный сервер можно принудительно перенастроить на порт 8088 или на любой другой. Некоторые анализаторы пакетов в подобной ситуации не способны корректно определить протокол и отображают лишь информацию о протоколе нижнего уровня (TCP или UDP).

Существуют программные снифферы, к которым в качестве плагинов или встроенных модулей прилагаются программные аналитические модули, позволяющие создавать отчеты с полезной аналитической информацией о перехваченном трафике.

Другая характерная черта большинства программных анализаторов пакетов — возможность настройки фильтров до и после захвата трафика. Фильтры выделяют из общего трафика определенные пакеты по заданному критерию, что позволяет при анализе трафика избавиться от лишней информации.

У каждого из команды ][ свои предпочтения по части софта и утилит для
пен-теста. Посовещавшись, мы выяснили, что выбор так разнится, что можно
составить настоящий джентльменский набор из проверенных программ. На том и
решили. Чтобы не делать сборную солянку, весь список мы разбили на темы – и в
этот раз коснемся утилит для снифинга и манипулирования пакетами. Пользуйся на
здоровье.

Wireshark

Netcat

Если говорить о перехвате данных, то Network Miner снимет с «эфира»
(или из заранее подготовленного дампа в PCAP-формате) файлы, сертификаты,
изображения и другие медиа, а также пароли и прочую инфу для авторизации.
Полезная возможность - поиск тех участков данных, что содержат ключевые слова
(например, логин пользователя).

Scapy

Сайт:
www.secdev.org/projects/scapy

Must-have для любого хакера, представляющий собой мощнейшую тулзу для
интерактивной манипуляции пакетами. Принять и декодировать пакеты самых
различных протоколов, ответить на запрос, инжектировать модифицированный и
собственноручно созданный пакет - все легко! С ее помощью можно выполнять целый
ряд классических задач, вроде сканирования, tracorute, атак и определения
инфраструктуры сети. В одном флаконе мы получаем замену таких популярных утилит,
как: hping, nmap, arpspoof, arp-sk, arping, tcpdump, tetheral, p0f и т.д. В то
же самое время Scapy позволяет выполнить любое, даже самое специфическое
задание, которое никогда не сможет сделать уже созданное другим разработчиком
средство. Вместо того чтобы писать целую гору строк на Си, чтобы, например,
сгенерировать неправильный пакет и сделать фаззинг какого-то демона, достаточно
накидать пару строчек кода с использованием Scapy ! У программы нет
графического интерфейса, а интерактивность достигается за счет интерпретатора
Python. Чуть освоишься, и тебе уже ничего не будет стоить создать некорректные
пакеты, инжектировать нужные фреймы 802.11, совмещать различные подходы в атаках
(скажем, ARP cache poisoning и VLAN hopping) и т.д. Разработчики сами настаивают
на том, чтобы возможности Scapy использовались в других проектах. Подключив ее
как модуль, легко создать утилиту для различного рода исследования локалки,
поиска уязвимостей, Wi-Fi инжекции, автоматического выполнения специфических
задач и т.д.

packeth

Сайт:
Платформа: *nix, есть порт под Windows

Интересная разработка, позволяющая, с одной стороны, генерировать любой
ethernet пакет, и, с другой, отправлять последовательности пакетов с целью
проверки пропускной способности. В отличие от других подобных тулз, packeth
имеет графический интерфейс, позволяя создавать пакеты в максимально простой
форме. Дальше - больше. Особенно проработано создание и отправка
последовательностей пакетов. Ты можешь устанавливать задержки между отправкой,
слать пакеты с максимальной скоростью, чтобы проверить пропускную способность
участка сети (ага, вот сюда-то и будут ддосить) и, что еще интереснее -
динамически изменять параметры в пакетах (например, IP или MAC-адрес).

Сетевые анализаторы представляют собой эталонные измерительные приборы для диагностики и сертификации кабелей и кабельных систем. Они могут с высокой точностью измерить все электрические параметры кабельных систем, а также работают на более высоких уровнях стека протоколов. Сетевые анализаторы генерируют синусоидальные сигналы в широком диапазоне частот, что позволяет измерять на приемной паре амплитудно-частотную характеристику и перекрестные наводки, затухание и суммарное затухание. Сетевой анализатор представляет собой лабораторный прибор больших размеров, достаточно сложный в обращении.

Многие производители дополняют сетевые анализаторы функциями статистического анализа трафика - коэффициента использования сегмента, уровня широковещательного трафика, процента ошибочных кадров, а также функциями анализатора протоколов, которые обеспечивают захват пакетов разных протоколов в соответствии с условиями фильтров и декодирование пакетов.

7.3.4. Кабельные сканеры и тестеры

Основное назначение кабельных сканеров - измерение электрических и механических параметров кабелей: длины кабеля, параметра NEXT, затухания, импеданса, схемы разводки пар проводников, уровня электрических шумов в кабеле. Точность измерений, произведенных этими устройствами, ниже, чем у сетевых анализаторов, но вполне достаточна для оценки соответствия кабеля стандарту.

Для определения местоположения неисправности кабельной системы (обрыва, короткого замыкания, неправильно установленного разъема и т. д.) используется метод «отраженного импульса» (Time Domain Reflectometry, TDR). Суть этого метода состоит в том, что сканер излучает в кабель короткий электрический импульс и измеряет время задержки до прихода отраженного сигнала. По полярности отраженного импульса определяется характер повреждения кабеля (короткое замыкание или обрыв). В правильно установленном и подключенном кабеле отраженный импульс почти отсутствует.

Точность измерения расстояния зависит от того, насколько точно известна скорость распространения электромагнитных волн в кабеле. В различных кабелях она будет разной. Скорость распространения электромагнитных волн в кабеле (Nominal Velocity of Propagation, NVP) обычно задается в процентах от скорости света в вакууме. Современные сканеры содержат в себе электронную таблицу данных о NVP для всех основных типов кабелей, что дает возможность пользователю устанавливать эти параметры самостоятельно после предварительной калибровки.

Кабельные сканеры - это портативные приборы, которые обслуживающий персонал может постоянно носить с собой.

Кабельные тестеры - наиболее простые и дешевые приборы для диагностики кабеля. Они позволяют определить непрерывность кабеля, однако, в отличие от кабельных сканеров, не дают ответа на вопрос о том, в каком месте произошел сбой.

7.3.5. Многофункциональные портативные приборы мониторинга

В последнее время начали выпускаться многофункциональные портативные приборы, которые объединяют в себе возможности кабельных сканеров, анализаторов протоколов и даже некоторые функции систем управления, сохраняя в то же время такое важное свойство, как портативность. Многофункциональные приборы мониторинга имеют специализированный физический интерфейс, позволяющий выявлять проблемы и тестировать кабели на физическом уровне, который дополняется микропроцессором с программным обеспечением для выполнения высокоуровневых функций.

Рассмотрим типичный набор функций и свойств такого прибора, который оказывается очень полезным для диагностики причин разнообразных неполадок в сети, происходящих на всех уровнях стека протоколов, от физического до прикладного.

Интерфейс пользователя

Прибор обычно предоставляет пользователю удобный и интуитивно понятный интерфейс, основанный на системе меню. Графический интерфейс пользователя реализован на многострочном жидкокристаллическом дисплее и индикаторах состояния на светодиодах, извещающих пользователя о наиболее общих проблемах наблюдаемых сетей. Имеется обширный файл подсказок оператору с уровневым

доступом в соответствии с контекстом. Информация о состоянии сети представляется таким образом, что пользователи любой квалификации могут ее быстро понять.

Функции проверки аппаратуры и кабелей

Многофункциональные приборы сочетают наиболее часто используемые на практике функции кабельных сканеров с рядом новых возможностей тестирования.

Сканирование кабеля

Функция позволяет измерять длину кабеля, расстояние до самого серьезного дефекта и распределение импеданса по длине кабеля. При проверке неэкранированной витой пары могут быть выявлены следующие ошибки: расщепленная пара, обрывы, короткое замыкание и другие виды нарушения соединения.

Для сетей Ethernet на коаксиальном кабеле эти проверки могут быть осуществлены на работающей сети.

Функция определения распределения кабельных жил Осуществляет проверку правильности подсоединения жил, наличие промежуточных разрывов и перемычек на витых парах. На дисплей выводится перечень связанных между собой контактных групп.

Функция определения карты кабелей

Используется для составления карты основных кабелей и кабелей, ответвляющихся от центрального помещения.

Автоматическая проверка кабеля

В зависимости от конфигурации возможно определить длину, импеданс, схему подключения жил, затухание и параметр NEXT на частоте до 100 МГц. Автоматическая проверка выполняется для:

    коаксиальных кабелей;

    экранированной витой пары с импедансом 150 Ом;

    неэкранированной витой пары с сопротивлением 100 Ом.

Целостность цепи при проверке постоянным током

Эта функция используется при проверке коаксиальных кабелей для верификации правильности используемых терминаторов и их установки.

Определение номинальной скорости распространения

Функция вычисляет номинальную скорость распространения (Nominal Velocity of Propagation, NVP) по кабелю известной длины и дополнительно сохраняет полученные результаты в файле для определяемого пользователем типа кабеля (User Defined cable type) или стандартного кабеля.

Комплексная автоматическая проверка пары «сетевой адаптер-концентратор»

Этот комплексный тест позволяет последовательно подключить прибор между конечным узлом сети и концентратором. Тест дает возможность автоматически опре-

делить местонахождение источника неисправности - кабель, концентратор, сетевой адаптер или программное обеспечение станции.

Автоматическая проверка сетевых адаптеров

Проверяет правильность функционирования вновь установленных или «подозрительных» сетевых адаптеров. Для сетей Ethernet по итогам проверки сообщаются: МАС-адрес, уровень напряжения сигналов (а также присутствие и полярность импульсов Link Test для 10BASE-T). Если сигнал не обнаружен на сетевом адаптере, то тест автоматически сканирует соединительный разъем и кабель для их диагностики.

Функции сбора статистики

Эти функции позволяют в реальном масштабе времени проследить за изменением наиболее важных параметров, характеризующих «здоровье» сегментов сети. Статистика обычно собирается с разной степенью детализации по разным группам.

Сетевая статистика

В этой группе собраны наиболее важные статистические показатели - коэффициент использования сегмента (utilization), уровень коллизий, уровень ошибок и уровень широковещательного трафика. Превышение этими показателями определенных порогов в первую очередь говорят о проблемах в том сегменте сети, к которому подключен многофункциональный прибор.

Статистика ошибочных кадров

Эта функция позволяет отслеживать все типы ошибочных кадров для определенной технологии. Например, для технологии Ethernet характерны следующие типы ошибочных кадров.

    Укороченные кадры (Short frames). Это кадры, имеющие длину, меньше допустимой, то есть меньше 64 байт. Иногда этот тип кадров дифференцируют на два класса - просто короткие кадры (short), у которых имеется корректная контрольная сумма, и «коротышки» (runts), не имеющие корректной контрольной суммы. Наиболее вероятными причинами появления укороченных кадров являются неисправные сетевые адаптеры и их драйверы.

    Удлиненные кадры (Jabbers). Это кадры, имеющие длину, превышающую допустимое значение в 1518 байт с хорошей или плохой контрольной суммой. Удлиненные кадры являются следствием затянувшейся передачи, которая появляется из-за неисправностей сетевых адаптеров.

    Кадры нормальных размеров, но с плохой контрольной суммой (Bad FCS) и кадры с ошибками выравнивания по границе байта. Кадры с неверной контрольной суммой являются следствием множества причин - плохих адаптеров, помех на кабелях, плохих контактов, некорректно работающих портов повторителей, мостов, коммутаторов и маршрутизаторов. Ошибка выравнивания всегда сопровождается ошибкой по контрольной сумме, поэтому некоторые средства анализа-трафика не делают между ними различий. Ошибка выравнивания может быть следствием прекращения передачи кадра при распознавании коллизии передающим адаптером.

    Кадры-призраки (ghosts) являются результатом электромагнитных наводок на кабеле. Они воспринимаются сетевыми адаптерами как кадры, не имеющие нормального признака начала кадра - 10101011. Кадры-призраки имеют длину более 72 байт, в противном случае они классифицируются как удаленные коллизии. Количество обнаруженных кадров-призраков в большой степени зависит от точки подключения сетевого анализатора. Причинами их возникновения являются петли заземления и другие проблемы с кабельной системой.

Знание процентного распределения общего количества ошибочных кадров по их типам может многое подсказать администратору о возможных причинах неполадок в сети. Даже небольшой процент ошибочных кадров может привести к значительному снижению полезной пропускной способности сети, если протоколы, восстанавливающие искаженные кадры, работают с большими тайм-аутами ожидания квитанций. Считается, что в нормально работающей сети процент ошибочных кадров не должен превышать 0,01 %, то есть не более 1 ошибочного кадра из 10 000.

Статистика по коллизиям

Эта группа характеристик дает информацию о количестве и видах коллизий, отмеченных на сегменте сети, позволяет определить наличие и местонахождение проблемы. Анализаторы протоколов обычно не могут дать дифференцированной картины распределения общего числа коллизий по их отдельным типам, в то же время знание преобладающего типа коллизий может помочь понять причину плохой работы сети.

Ниже приведены основные типы коллизий сети Ethernet.

    Локальная коллизия (Local Collision). Является результатом одновременной передачи двух или более узлов, принадлежащих к тому сегменту, в котором производятся измерения. Если многофункциональный прибор не генерирует кадры, то в сети на витой паре или волоконно-оптическом кабеле локальные коллизии не фиксируются. Слишком высокий уровень локальных коллизий является следствием проблем с кабельной системой.

    Удаленная коллизия (Remote Collision). Эти коллизии происходят на другой стороне повторителя (по отношению к тому сегменту, в котором установлен измерительный прибор). В сетях, построенных на многопортовых повторителях (10Base-T, 10Base-FL/FB, 100Base-TX/FX/T4, Gigabit Ethernet), все измеряемые коллизии являются удаленными (кроме тех случаев, когда анализатор сам генерирует кадры и может быть виновником коллизии). Не все анализаторы протоколов и средства мониторинга одинаковым образом фиксируют удаленные коллизии. Это происходит из-за того, что некоторые измерительные средства и системы не фиксируют коллизии, происходящие при передаче преамбулы.

    Поздняя коллизия (Late Collision). Это коллизия, которая происходит после передачи первых 64 байт кадра (по протоколу Ethernet коллизия должна обнаруживаться при передаче первых 64 байт кадра). Результатом поздней коллизии будет кадр, который имеет длину более 64 байт и содержит неверное значение контрольной суммы. Чаще всего это указывает на то, что сетевой адаптер, являющийся источником конфликта, оказывается не в состоянии правильно прослушивать линию и поэтому не может вовремя остановить передачу. Другой причиной поздней коллизии является слишком большая длина кабельной системы или слишком большое количество промежуточных повторителей, приводящее к превышению максимального значения времени двойного оборота сигнала. Средняя интенсивность коллизий в нормально работающей сети должна быть меньше 5 %. Большие всплески (более 20 %) могут быть индикатором кабельных проблем.

Распределение используемых сетевых протоколов

Эта статистическая группа относится к протоколам сетевого уровня. На дисплее отображается список основных протоколов в убывающем порядке относительно процентного соотношения кадров, содержащих пакеты данного протокола к общему числу кадров в сети.

Основные отправители (Top Sendes)

Функция позволяет отслеживать наиболее активные передающие узлы локальной сети. Прибор можно настроить на фильтрацию по единственному адресу и выявить список основных отправителей кадров для данной станции. Данные отражаются на дисплее в виде диаграммы вместе с перечнем основных отправителей кадров.

Основные получотели (Top Receivers)

Функция позволяет следить за наиболее активными узлами-получателями сети. Информация отображается в виде, аналогичном приведенному выше.

Основные генераторы широковещательного трафика (Top Broadcasters)

Функция выявляет станции сети, которые больше остальных генерируют кадры с широковещательными и групповыми адресами.

Генерирование трафика (Traffic Generation)

Прибор может генерировать трафик для проверки работы сети при повышенной нагрузке. Трафик может генерироваться параллельно с активизированными функциями Сетевая статистика, Статистика ошибочных кадров иСтатистика по коллизиям.

Пользователь может задать параметры генерируемого трафика, такие как интенсивность и размер кадров. Для тестирования мостов и маршрутизаторов прибор может автоматически создавать заголовки IP- и IPX-пакетов, и все что требуется от оператора - это внести адреса источника и назначения.

В ходе испытаний пользователь может увеличить на ходу размер и частоту следования кадров с помощью клавиш управления курсором. Это особенно ценно при поиске источника проблем производительности сети и условий возникновения отказов.

Функции анализа протоколов

Обычно портативные многофункциональные приборы поддерживают декодирование и анализ только основных протоколов локальных сетей, таких как протоколы стеков TCP/IP, Novell NetWare, NetBIOS и Banyan VINES.

В некоторых многофункциональных приборах отсутствует возможность декодирования захваченных пакетов, как в анализаторах протоколов, а вместо этого собирается статистика о наиболее важных пакетах, свидетельствующих о наличии проблем в сетях. Например, при анализе протоколов стека TCP/IP собирается статистика по пакетам протокола ICMP, с помощью которого маршрутизаторы сообщают конечным узлам о возникновении разного рода ошибок. Для ручной проверки достижимости узлов сети в приборы включается поддержка утилиты IP Ping, а также аналогичных по назначению утилит NetWare Ping и NetBIOS Ping.

Министерство образования и наук Российской Федерации

ГОУ «Санкт-Петербургский государственный политехнический университет»

Чебоксарский институт экономики и менеджмента (филиал)

Кафедра высшей математики и информационных технологий

РЕФЕРАТ

по курсу «Защита информации».

на тему: «Сетевые анализаторы»

Выполнил

студент 4 курса з/о 080502-51М

по специальности «Управление

на предприятии машиностроения»

Павлов К.В.

Проверил

Преподаватель

Чебоксары 2011


ВВЕДЕНИЕ

Сети Ethernet завоевали огромную популярность благодаря хорошей пропускной способности, простоте установки и приемлемой стоимости установки сетевого оборудования.
Однако технология Ethernet не лишена существенных недостатков. Основной из них состоит в незащищенности передаваемой информации. Компьютеры, подключенные к сети Ethernet, в состоянии перехватывать информацию, адресованную своим соседям. Причиной тому является принятый в сетях Ethernet так называемый широковещательный механизм обмена сообщениями.

Объединение компьютеров в сети ломает старые аксиомы защиты информации. Например, о статичности безопасности. В прошлом уязвимость системы могла быть обнаружена и устранена администратором системы путем установки соответствующего обновления, который мог только через несколько недель или месяцев проверить функционирование установленной "заплаты". Однако эта "заплата" могла быть удалена пользователем случайно или в процесс работы, или другим администратором при инсталляции новых компонент. Все меняется, и сейчас информационные технологии меняются настолько быстро, что статичные механизмы безопасности уже не обеспечивают полной защищенности системы.

До недавнего времени основным механизмом защиты корпоративных сетей были межсетевые экраны (firewall). Однако межсетевые экраны, предназначенные для защиты информационных ресурсов организации, часто сами оказываются уязвимыми. Это происходит потому, что системные администраторы создают так много упрощений в системе доступа, что в итоге каменная стена системы защиты становится дырявой, как решето. Защита с помощью межсетевых экранов (МСЭ) может оказаться нецелесообразной для корпоративных сетей с напряженным трафиком, поскольку использование многих МСЭ существенно влияет на производительность сети. В некоторых случаях лучше "оставить двери широко распахнутыми", а основной упор сделать на методы обнаружения вторжения в сеть и реагирования на них.

Для постоянного (24 часа в сутки 7 дней в неделю, 365 дней в год) мониторинга корпоративной сети на предмет обнаружения атак предназначены системы "активной" защиты - системы обнаружения атак. Данные системы выявляют атаки на узлы корпоративной сети и реагируют на них заданным администратором безопасности образом. Например, прерывают соединение с атакующим узлом, сообщают администратору или заносят информацию о нападении в регистрационные журналы.


1. СЕТЕВЫЕ АНАЛИЗАТОРЫ

1.1 IP - ALERT 1 ИЛИ ПЕРВЫЙ СЕТЕВОЙ МОНИТОР

Для начала следует сказать пару слов о локальном широковещании. В сети типа Ethernet подключенные к ней компьютеры, как правило, совместно используют один и тот же кабель, который служит средой для пересылки сообщений между ними.

Желающий передать какое-либо сообщение по общему каналу должен вначале удостовериться, что этот канал в данный момент времени свободен. Начав передачу, компьютер прослушивает несущую частоту сигнала, определяя, не произошло ли искажения сигнала в результате возникновения коллизий с другими компьютерами, которые ведут передачу своих данных одновременно с ним. При наличии коллизии передача прерывается и компьютер "замолкает" на некоторый интервал времени, чтобы попытаться повторить передачу несколько позднее. Если компьютер, подключенный к сети Ethernet, ничего не передает сам, он тем не менее продолжает "слушать" все сообщения, передаваемые по сети соседними компьютерами. Заметив в заголовке поступившей порции данных свой сетевой адрес, компьютер копирует эту порцию в свою локальную память.

Существуют два основных способа объединения компьютеров в сеть Ethernet. В первом случае компьютеры соединяются при помощи коаксиального кабеля. Этот кабель прокладывается от компьютера к компьютеру, соединяясь с сетевыми адаптерами Т-образным разъемом и замыкаясь по концам BNC-терминаторами. Такая топология на языке профессионалов называется сетью Ethernet 10Base2. Однако ее еще можно назвать сетью, в которой "все слышат всех". Любой компьютер, подключенный к сети, способен перехватывать данные, посылаемые по этой сети другим компьютером. Во втором случае каждый компьютер соединен кабелем типа "витая пара" с отдельным портом центрального коммутирующего устройства - концентратором или с коммутатором. В таких сетях, которые называются сетями Ethernet lOBaseT, компьютеры поделены на группы, именуемые доменами коллизий. Домены коллизий определяются портами концентратора или коммутатора, замкнутыми на общую шину. В результате коллизии возникают не между всеми компьютерами сети. а по отдельности - между теми из них, которые входят в один и тот же домен коллизий, что повышает пропускную способность сети в целом.

В последнее время в крупных сетях стали появляться коммутаторы нового типа, которые не используют широковещание и не замыкают группы портов между собой. Вместо этого все передаваемые по сети данные буферизуются в памяти и отправляются по мере возможности. Однако подобных сетей пока довольно мало - не более 5% от общего числа сетей типа Ethernet.

Таким образом, принятый в подавляющем большинстве Ethernet-сетей алгоритм передачи данных требует от каждого компьютера, подключенного к сети, непрерывного "прослушивания" всего без исключения сетевого трафика. Предложенные некоторыми людьми алгоритмы доступа, при использовании которых компьютеры отключались бы от сети на время передачи "чужих" сообщений, так и остались нереализованными из-за своей чрезмерной сложности, дороговизны внедрения и малой эффективности.

Что такое IPAlert-1 и откуда он взялся? Когда-то практические и теоретические изыскания авторов по направлению, связанному с исследованием безопасности сетей, навели на следующую мысль: в сети Internet, как и в других сетях (например, Novell NetWare, Windows NT), ощущалась серьезная нехватка программного средства защиты, осуществляющего комплексный контроль (мониторинг) на канальном уровне за всем потоком передаваемой по сети информации с целью обнаружения всех типов удаленных воздействий, описанных в литературе. Исследование рынка программного обеспечения сетевых средств защиты для Internet выявило тот факт, что подобных комплексных средств обнаружения удаленных воздействий не существовало, а те, что имелись, были предназначены для обнаружения воздействий одного конкретного типа (например, ICMP Redirect или ARP). Поэтому и была начата разработка средства контроля сегмента IP-сети, предназначенного для использования в сети Internet и получившее следующее название: сетевой монитор безопасности IP Alert-1.

Основная задача этого средства, программно анализирующего сетевой трафик в канале передачи, состоит не в отражении осуществляемых по каналу связи удаленных атак, а в их обнаружении, протоколировании (ведении файла аудита с протоколированием в удобной для последующего визуального анализа форме всех событий, связанных с удаленными атаками на данный сегмент сети) и незамедлительным сигнализировании администратору безопасности в случае обнаружения удаленной атаки. Основной задачей сетевого монитора безопасности IP Alert-1 является осуществление контроля за безопасностью соответствующего сегмента сети Internet.

Сетевой монитор безопасности IP Alert-1обладает следующими функциональными возможностями и позволяет путем сетевого анализа обнаружить следующие удаленные атаки на контролируемый им сегмент сети:

1. Контроль за соответствием IP- и Ethernet-адресов в пакетах, передаваемых хостами, находящимися внутри контролируемого сегмента сети.

На хосте IP Alert-1 администратор безопасности создает статическую ARP-таблицу, куда заносит сведения о соответствующих IP- и Ethernet- адресах хостов, находящихся внутри контролируемого сегмента сети.

Данная функция позволяет обнаружить несанкционированное изменение IP-адреса или его подмену (так называемый IP Spoofing, спуфинг, ип-спуфинг (жарг.)).

2. Контроль за корректным использованием механизма удаленного ARP-поиска. Эта функция позволяет, используя статическую ARP-таблицу, определить удаленную атаку "Ложный ARP-сервер".

3. Контроль за корректным использованием механизма удаленного DNS-поиска. Эта функция позволяет определить все возможные виды удаленных атак на службу DNS

4. Контроль за корректностью попыток удаленного подключения путем анализа передаваемых запросов. Эта функция позволяет обнаружить, во-первых, попытку исследования закона изменения начального значения идентификатора TCP-соединения - ISN, во-вторых, удаленную атаку "отказ в обслуживании", осуществляемую путем переполнения очереди запросов на подключение, и, в-третьих, направленный "шторм" ложных запросов на подключение (как TCP, так и UDP), приводящий также к отказу в обслуживании.

Таким образом, сетевой монитор безопасности IP Alert-1 позволяет обнаружить, оповестить и запротоколировать большинство видов удаленных атак. При этом данная программа никоим образом не является конкурентом системам Firewall. IP Alert-1, используя особенности удаленных атак на сеть Internet, служит необходимым дополнением - кстати, несравнимо более дешевым, - к системам Firewall. Без монитора безопасности большинство попыток осуществления удаленных атак на ваш сегмент сети останется скрыто от ваших глаз. Ни один из известных Firewall-ов не занимается подобным интеллектуальным анализом проходящих по сети сообщений на предмет выявления различного рода удаленных атак, ограничиваясь, в лучшем случае, ведением журнала, в который заносятся сведения о попытках подбора паролей, о сканировании портов и о сканировании сети с использованием известных программ удаленного поиска. Поэтому, если администратор IP-сети не желает оставаться безучастным и довольствоваться ролью простого статиста при удаленных атаках на его сеть, то ему желательно использовать сетевой монитор безопасности IP Alert-1.

Данная статья будет, в какой-то мере, посвящена безопасности. У меня недавно возникла мысль, а как проверить, какие приложение используют интернет соединение, куда может утекать трафик, через какие адреса идет соединение и многое другое. Есть пользователи, которые также задаются этим вопросом.

Допустим у вас есть точка доступа, к которой подключены только вы, но вы замечаете, что скорость соединения какая-то низкая, звоните провайдеру, они отмечают, что все нормально или что-то подобное. А вдруг к вашей сети кто-то подключен? Можно попробовать с помощью методов из этой статьи узнать, какие программы, которые требуют Интернет-соединения он использует. А вообще, вы можете использовать эти методы, как душе угодно.

Ну что, давайте анализировать?

Команда netstat для анализа сетевой активности

Этот способ без использования всяких программ, нам лишь понадобится командная строка. В Windows есть специальная утилита netstat, которая занимается анализом сетей, давайте использовать ее.

Желательно, чтобы командная строка была запущена от имени администратора. В Windows 10 можно нажать на меню Пуск правой кнопкой мыши и выбрать соответствующий пункт.

В командной строке вводим команду netstat и видим много интересной информации:


Мы видим соединения, в том числе, их порты, адреса, соединения активные и ожидающиеся. Это конечно круто, но нам этого мало. Нам бы узнать, какая программа использует сеть, для этого вместе с командной netstat можно использовать параметр –b, тогда команда будет выглядеть так:

netstat –b

Теперь в квадратных скобочках будет видна утилита, которая пользуется интернетом.


Это не единственный параметр в этой команде, для отображения полного списка введите команду netstat –h .


Но, как показывает практика, многие утилиты командной строки не дают той информации, которой хотелось бы видеть, да и не так это удобно. В качестве альтернативы мы будем использовать стороннее программное обеспечение – TCPView.

Мониторинг сетевой активности с помощью TCPView

Скачать программу можно отсюда . Ее даже не нужно устанавливать вы просто ее распаковываете и запускаете утилиту. Также она бесплатная, но не поддерживает русский язык, но этого особо и не нужно, из этой статьи вы поймете, как ей пользоваться.

Итак, утилита TCPView занимается мониторингом сетей и показывает в виде списка все подключенные к сети программы, порты, адреса и соединения.


В принципе тут все предельно ясно, но некоторые пункты программы я поясню:

  • Столбец Process , ясное дело, показывает название программы или процесса.
  • Столбец PID указывает на идентификатор подключенного к сети процесса.
  • Столбец Protocol указывает на протокол процесса.
  • Столбец Local adress – локальный адрес процесса данного компьютера.
  • Столбец Local port – локальный порт.
  • Столбец Remote adress указывает на адрес, к которому подключена программа.
  • Столбец State – указывает на состояние соединения.
  • Там, где указано Sent Packets и Rcvd Packets указывает на отправленное и полученное количество пакетов, тоже самое и со столбцами Bytes .

Еще с помощью программы можно нажать на процесс правой кнопкой мыши и завершить его, либо посмотреть, где он находится.

Названия адреса, как показано на изображении ниже можно преобразовать в локальный адрес, для этого нужно нажать горячие клавиши Ctrl+R .



С другими параметрами тоже произойдет изменение – с протоколами и доменами.

Если вы увидите строки разного цвета, например, зеленого, то это означает запуск нового соединения, если покажется красный цвет, то соединение завершено.

Вот и все основные настройки программы, там еще есть мелки параметры, типа настройки шрифта и сохранения списка соединения.

Если вам понравилась эта программа, то обязательно используйте ее. Опытные пользователи точно найдут для каких целей применить ее.

Публикации по теме

  • Отслеживание посылки с Aliexpress Отслеживание посылки с Aliexpress

    После оплаты заказа на торговой площадке Aliexpress, продавец упаковывает ваши покупки для транспортировки и передает их почтовой компании....

  • Уничтожить враждебных роботов Уничтожить враждебных роботов

    13815 22 Марта 2016 15:58 Локации для исследования: Уоттс Электроникс (окрестности) Как только вы войдёте в игру после установки...